Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T07:51:48.745Z Has data issue: false hasContentIssue false

3 - Colour and Vision

Published online by Cambridge University Press:  17 September 2021

Andrew Fabian
Affiliation:
University of Cambridge
Janet Gibson
Affiliation:
Darwin College, Cambridge
Mike Sheppard
Affiliation:
University of Cambridge
Simone Weyand
Affiliation:
University of Cambridge
Andrew Blake
Affiliation:
Samsung AI Research Centre
Carolin Crawford
Affiliation:
University of Cambridge
Paul Fletcher
Affiliation:
University of Cambridge
Sophie Hackford
Affiliation:
Wired Magazine
Anya Hurlbert
Affiliation:
Newcastle University
Dan-Eric Nilsson
Affiliation:
Lunds Universitet, Sweden
Carlo Rovelli
Affiliation:
International Centre for Theoretical Physics
Get access

Summary

When Turner daubed a red buoy in his seascape Helvoetsluys, what did he mean? In nature, red may repel or attract, signalling toxicity or ripeness, anger, ruddy health or sexual readiness. For Turner, the red created contrast, and in making that mark, he meant to generate salience and arouse interest, to dominate his rivals and draw in his admirers. Colour has long excited emotions and intellectual debate, not only for visual art, but also in philosophy, psychology and physiology. In contemporary vision science studies, colour helps people find objects faster, discern material properties, learn, conceptualise and memorise. Yet colour is made in the mind, not out there in the world. It is a subjective phenomenon, a personal possession, one that varies between individual eyes, and one that people cling to with ardour when challenged: witness the public divide over the 'blue/black', 'white/gold' dress. So the question is not only what does colour mean, in life and in art, but how does it mean anything? How does the human brain create colour, stabilise it, and make its meaning? And why does it evoke emotion and aesthetic appreciation?

Type
Chapter
Information
Vision , pp. 57 - 106
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gage, J., J. M. W. Turner: ‘A Wonderful Range of Mind’. New Haven, CT and London: Yale University Press, 1987.Google Scholar
Hamilton, J., Turner's Britain. London: Merrell Publishers Limited, 2003.Google Scholar
Gage, J., Colour and Culture. London: Thames and Hudson, 1993.Google Scholar
Ball, P., Bright Earth: The Invention of Colour. London: Viking, 2001.Google Scholar
Biederman, I., and Bar, M. One-shot viewpoint invariance in matching novel objects. Vision Res. 1999; 39(17): 28852899.Google Scholar
Biederman, I. Recognition-by-components: A theory of human image understanding. Psychol. Rev. 1987; 94(2): 115147.CrossRefGoogle ScholarPubMed
Poggio, T., and Edelman, S. A network that learns to recognize 3-dimensional objects. Nature 1990; 343(6255): 263266.Google Scholar
Biederman, I., and Ju, G. Surface versus edge-based determinants of visual recognition. Cogn. Psychol. 1988; 20(1): 3864.Google Scholar
Tanaka, J. W., and Presnell, L. M. Color diagnosticity in object recognition. Perception & Psychophys. 1999; 61(6): 11401153.Google Scholar
Oliva, A., and Schyns, P. G. Diagnostic colors mediate scene recognition. Cogn. Psychol. 2000; 41(2): 176210.Google Scholar
Therriault, D. J., Yaxley, R. H., and Zwaan, R. A. The role of color diagnosticity in object recognition and representation. Cogn. Processing 2009; 10(4): 335342.Google Scholar
Rossion, B., and Pourtois, G. Revisiting Snodgrass and Vanderwart's object pictorial set: The role of surface detail in basic-level object recognition. Perception 2004; 33(2): 217236.Google Scholar
Naor-Raz, G., Tarr, M. J., and Kersten, D. Is color an intrinsic property of object representation? Perception 2003; 32(6): 667680.Google Scholar
Hurlbert, A., and Poggio, T. A network for image segmentation using color. In Touretzky, D. S., ed. Neural Information Processing Systems I. San Francisco, CA: Morgan Kaufmann, 1989; 297303.Google Scholar
Nieuwenhuis, C., and Cremers, D. Spatially varying color distributions for interactive multilabel segmentation. IEEE Trans. Pattern Analysis Machine Intell. 2013; 35(5): 12341247.Google Scholar
Kingdom, F. A. A., Perceiving light versus material. Vision Res. 2008; 48(20): 20902105.Google Scholar
Wolfe, J. M., and Horowitz, T. S. What attributes guide the deployment of visual attention and how do they do it? Nature Rev. Neurosci. 2004; 5(6): 495501.Google Scholar
Jung, C. G. Archetypes and the Collective Unconscious. Vol. 9 of The Collected Works of C. G. Jung, ed. Fordham, M., Adler, G., and Read, S. H. Princeton, NJ: Princeton University Press, 1959.Google Scholar
Humphrey, N. K. The colour currency of Nature. In Porter, T., and Mikellides, B., eds. Colour for Architecture. London: Studio-Vista, 1976; 9598.Google Scholar
Hurlbert, A., and Owen, A. Biological, cultural, and developmental influences on color preference. In Elliot, A. J., Fairchild, M. D., and Franklin, A., eds. Handbook of Color Psychology. Cambridge: Cambridge University Press, 2015; 454480.Google Scholar
Goethe, J. W. von. Theory of Colours. London: John Murray, 1987.Google Scholar
Critchley, M. Acquired anomalies of colour perception of central origin. Brain 1965; 88: 711724.Google Scholar
Livingstone, M. S., and Hubel, D. H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 1984; 4(1): 309356.Google Scholar
Shipp, S., Adams, D. L., Moutoussis, K., and Zeki, S. Feature binding in the feedback layers of area V2. Cereb. Cortex 2009; 19(10): 22302239.Google Scholar
Seymour, K., Clifford, C. W. G., Logothetis, N. K., and Bartels, A. Coding and binding of color and form in visual cortex. Cereb. Cortex 2010; 20(8): 19461954.Google Scholar
Lafer-Sousa, R., and Conway, B. R. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nature Neurosci. 2013; 16(12): 18701878.Google Scholar
Chang, L., Bao, P. L., and Tsao, D. Y. The representation of colored objects in macaque color patches. Nature Commun. 2017; 8: 2064.Google Scholar
Schloss, K. B., Lessard, L., Walmsley, C. S, and Foley, K. Color inference in visual communication: the meaning of colors in recycling. Cogn. Res.: Principles Implications 2018; 3: 5.Google Scholar
BBC, Witness: Bloods and Crips. 2015.Google Scholar
Hinton, J. Lilac Chaser. 2005; available from https://michaelbach.de/ot/col-lilacChaser/Google Scholar
Hurlbert, A. C. The perceptual quality of color. In Albertazzi, L. ed. Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Appearance. Oxford: Wiley-Blackwell, 2013; 369394.Google Scholar
Helmholtz, H. von. Helmholtz’s Treatise on Physiological Optics. Reprinted from the 1924–1925 edition, Vol. 2. Bristol: Thoemmes Press, 2000.Google Scholar
Hurlbert, A. Colour constancy. Current Biol. 2007; 17(21): R906R907.Google Scholar
Pizlo, Z. Perception viewed as an inverse problem. Vision Res. 2001; 41(24): 31453161.Google Scholar
Poggio, T., and Koch, C. Ill-posed problems in early vision: From computational theory to analogue networks. Proc. Roy. Soc. B: Biol. Sci. 1985; 226(1244): 303323.Google Scholar
Bloj, M. G., Kersten, D., and Hurlbert, A. C. Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 1999; 402(6764): 877879.Google Scholar
Hurlbert, A. C. The chromatic Mach card. In Shapiro, A. G., and Todorovic, D., eds. The Oxford Compendium of Visual Illusions. Oxford: Oxford University Press, 2017; 382387.Google Scholar
Maloney, L. T., and Zhang, H. Decision-theoretic models of visual perception and action. Vision Res. 2010; 50(23): 23622374.Google Scholar
Lee, D., and Plataniotis, K. N. A taxonomy of color constancy and invariance algorithm. In Celebi, M. E., and Smolka, B., eds. Advances in Low-Level Color Image Processing. Dordrecht: Springer, 2014; 5594.Google Scholar
Brainard, D. H., and Hurlbert, A. C. Colour vision: Understanding #TheDress. Current Biol. 2015; 25(13): R551R554.Google Scholar
BBC, Colour: The Spectrum of Science. 2015.Google Scholar
Witzel, C., Racey, C., and O’Regan, J. K. The most reasonable explanation of ‘the dress’: Implicit assumptions about illumination. J. Vision 2017; 17(2).Google Scholar
Lafer-Sousa, R., Hermann, K. L., and Conway, B. R. Striking individual differences in color perception uncovered by ‘The Dress’ photograph. Current Biol. 2015; 25(13): R545R546.CrossRefGoogle ScholarPubMed
Gegenfurtner, K. R., Bloj, M., and Toscani, M. The many colours of ‘the dress’. Current Biol. 2015; 25(13): R543R544.Google Scholar
Uchikawa, K., Morimoto, T., and Matsumoto, T. Understanding individual differences in color appearance of ‘#TheDress’ based on the optimal color hypothesis. J. Vision 2017; 17(8).Google Scholar
Wallisch, P. Illumination assumptions account for individual differences in the perceptual interpretation of a profoundly ambiguous stimulus in the color domain: ‘The dress’. J. Vision 2017; 17(4).Google Scholar
Aston, S., and Hurlbert, A. C. What #theDress reveals about the role of illumination priors in color perception and color constancy. J. Vision 2017; 17(9): 118.Google Scholar
Toscani, M., Gegenfurtner, K. R., and Doerschner, K. Differences in illumination estimation in #thedress. J. Vision 2017; 17(1): 114.Google Scholar
Hering, E. Outlines of a Theory of the Light Sense. Cambridge, MA: Harvard University Press, 1964 (first published 1874).Google Scholar
Mollon, J. D.Cherries among the leaves’: The evolutionary origins of color vision. In Davis, S., ed. Color Perception: Philosophical, Psychological, Artistic and Computational Perspectives. Oxford: Oxford University Press, 2000; 1030.Google Scholar
Jacobs, G. H. Primate photopigments and primate color vision. Proc. National Acad. Sci. USA 1996; 93(2): 577581.CrossRefGoogle ScholarPubMed
Dominy, N. J., and Lucas, P. W. Ecological importance of trichromatic vision to primates. Nature 2001; 410(6826): 363366.Google Scholar
Lucas, P. W., Darvell, B. W., Lee, P. K., Yuen, T. D., and Choong, M. F. Colour cues for leaf food selection by long-tailed macaques (Macaca fascicularis) with a new suggestion for the evolution of trichromatic colour vision. Folia Primatol. 1998; 69(3): 139152.Google Scholar
Sumner, P., and Mollon, J. D. Catarrhine photopigments are optimized for detecting targets against a foliage background. J. Exp. Biol. 2000; 203(13): 19631986.CrossRefGoogle ScholarPubMed
Changizi, M. A., Zhang, Q., and Shimojo, S. Bare skin, blood and the evolution of primate colour vision. Biol. Lett. 2006; 2(2): 217221.Google Scholar
Fernandez, A. A., and Morris, M. R. Sexual selection and trichromatic color vision in primates: Statistical support for the preexisting-bias hypothesis. Amer. Naturalist 2007; 170(1): 1020.Google Scholar
Neitz, J., and Neitz, M. Evolution of the circuitry for conscious color vision in primates. Eye 2016; 31(2): 286300.Google Scholar
Walmsley, L., Hanna, L., Mouland, J., Martial, F., West, A. et al. Colour as a Signal for Entraining the Mammalian Circadian Clock. PLoS Biol. 2015; 13(4).Google Scholar
Lafer-Sousa, R., Liu, Y. O., Lafer-Sousa, L., Wiest, M. C., and Conway, B. R. Color tuning in alert macaque V1 assessed with fMRI and single-unit recording shows a bias toward daylight colors. J. Opt. Soc. Amer. A: Optics Image Sci. Vision 2012; 29(5): 657670.Google Scholar
Nathans, J. The evolution and physiology of human color vision: Insights from molecular genetic studies of visual pigments. Neuron 1999; 24(2): 299312.Google Scholar
Buchsbaum, G., and Gottschalk, A. Trichromacy, opponent colours coding and optimum color information transmission in the retina. Proc. Roy. Soc. B: Biol. Sci. 1983; 220(1218): 89113.Google ScholarPubMed
Milojevic, Z., Ennis, R., Toscani, M., and Gegenfurtner, K. R. Categorizing natural color distributions. Vision Res. 2018; 151: 1830.Google Scholar
Ling, Y., Vurro, M., and Hurlbert, A. C. Surface chromaticity distributions of natural objects under changing illumination. In Proceedings of the 4th European Conference on Colour in Graphics, Imaging and Vision. Terrassa: Society for Imaging Science and Technology, 2008; 263267.Google Scholar
Gibson, E., Futrell, R., Jara-Ettinger, J., Mahowald, K., Bergen, L. et al. Color naming across languages reflects color use. Proc. National Acad. Sci. USA 2017; 114(40): 1078510790.Google Scholar
Webster, M. A., Miyahara, E., Malkoc, G., and Raker, V. E. Variations in normal color vision. II. Unique hues. J. Opt. Soc. Amer. A: Optics Image Sci. Vision 2000; 17(9): 15451555.CrossRefGoogle ScholarPubMed
Conway, B. R. Color signals through dorsal and ventral visual pathways. Visual Neurosci. 2014; 31(2): 197209.Google Scholar
Chevreul, M. E. The Laws of Contrast of Colour: And Their Application to the Arts. London: George Rutledge and Sons, 1868.Google Scholar
van Gogh, V., Letter to Theo (533), Arles, 8 September 1888. In Powell, E., ed. The Letters of Vincent van Gogh to His Brother and Others 1872–1890. London: Constable & Robinson Ltd, 2003; 533.Google Scholar
Veen, L. Piet Mondrian on the principles of neo-plasticism. Int. J. Art Art History 2017; 5(2): 112.Google Scholar
Hurlbert, A., and Wolf, K. Color contrast: A contributory mechanism to color constancy. In Heywood, C. A., Milner, A. D., and Blakemore, C., eds. Roots of Visual Awareness: A Festschrift in Honor of Alan Cowey. Amsterdam: Elsevier, 2003, 147160.Google Scholar
Brown, R. O., and MacLeod, D. I. A. Color appearance depends on the variance of surround colors. Current Biol. 1997; 7(11): 844849.Google Scholar
Hurlbert, A. C. Computational models of colour constancy. In Walsh, V., and Kulikowski, J., eds. Perceptual Constancy: Why Things Look as They Do. Cambridge: Cambridge University Press, 1998; 283321.Google Scholar
Lee, B. B., Dacey, D. M., Smith, V. C., and Pokorny, J. Horizontal cells reveal cone type-specific adaptation in primate retina. Proc. National Acad. Sci. USA 1999; 96(25): 1461114616.Google Scholar
Conway, B. R. Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J. Neurosci. 2001; 21(8): 27682783.Google Scholar
Smithson, H. E. Sensory, computational and cognitive components of human colour constancy. Philos. Trans. Roy. Soc. B: Biol. Sci. 2005; 360(1458): 13291346.Google Scholar
Foster, D. H., Craven, B. J., and Sale, E. R. H. Immediate color constancy. Ophthalm. Physiol. Optics 1992; 12(2): 157160.Google Scholar
Barbur, J. L., and Spang, K. Colour constancy and conscious perception of changes of illuminant. Neuropsychologia 2008; 46(3): 853863.Google Scholar
Norman, L. J., Akins, K., Heywood, C. A., and Kentridge, R. W. Color constancy for an unseen surface. Current Biol. 2014; 24(23): 28222826.Google Scholar
Crichton, S. O. J., Pichat, J., Mackiewicz, M., Tian, G.-Y., and Hurlbert, A. Skin chromaticity gamuts for illumination recovery. In 6th European Conference on Colour in Graphics, Imaging and Vision. Amsterdam: The Society for Imaging Science and Technology, 2012; 266271.Google Scholar
Hansen, T., Olkkonen, M., Walter, S., and Gegenfurtner, K. R. Memory modulates color appearance. Nature Neurosci. 2006; 9(11): 13671368.Google Scholar
Hurlbert, A., van Zuijlen, M., Spoiala, C., and Wijntjes, M. Colour determines perceived circadian phase in visual art. In Abstracts from the 6th Visual Science of Art Conference (VSAC), Trieste, Italy, August 24th–26th, 2018. Art & Perception 2018; 6(4): 198.Google Scholar
Land, E. H., and McCann, J. J. Lightness and retinex theory. J. Opt. Soc. Amer. 1971; 61(1): 111.Google Scholar
Arend, L., and Reeves, A. Simultaneous color constancy. J. Opt. Soc. Amer. A: Optics Image Sci. Vision 1986; 3(10): 17431751.CrossRefGoogle ScholarPubMed
Foster, D. H. Color constancy. Vision Res. 2011; 51(7): 674700.Google Scholar
Rewald, J. The History of Impressionism. London: Secker and Warburg, 1973.Google Scholar
Bosten, J. M., Beer, R. D., and MacLeod, D. I. A. What is white? J. Vision 2015; 15(16).Google Scholar
Chauhan, T., Perales, E., Xiao, K., Hird, E., Karatzas, D., and Wuerger, S. The achromatic locus: Effect of navigation direction in color space. J. Vision 2014; 14(1:25): 111.Google Scholar
Winkler, A. D., Spillmann, L., Werner, J. S., and Webster, M. A. Asymmetries in blue–yellow color perception and the color of ‘the dress’. Current Biol. 2015; 25(13): R547R548.Google Scholar
Weiss, D., Witzel, C., and Gegenfurtner, K. Determinants of colour constancy and the blue bias. I-Perception 2017; 8(6).Google Scholar
Kuriki, I. The loci of achromatic points in a real environment under various illuminant chromaticities. Vision Res. 2006; 46(19): 30553066.Google Scholar
Gupta, G., Gross, N., Pastilha, R., and Hurlbert, A. The time course of color constancy by achromatic adjustment in immersive illumination: What looks white under coloured lights? bioRxiv 2020.Google Scholar
Pearce, B., Crichton, S., Mackiewicz, M., Finlayson, G. D., and Hurlbert, A. Chromatic illumination discrimination ability reveals that human colour constancy is optimised for blue daylight illuminations. PLoS ONE 2014; 9(2): e87989.Google Scholar
Radonjić, A., Pearce, B., Aston, S., Krieger, A., Dubin, H. et al. Illumination discrimination in real and simulated scenes. J. Vision 2016; 16(11): 118.Google Scholar
Aston, S., Radonjić, A., Brainard, D. H., and Hurlbert, A. C. Illumination discrimination for chromatically biased illuminations: Implications for color constancy. J. Vision 2019; 19(3): 123.Google Scholar
Hamilton, J., Turner: A Life. London: Hodder and Stoughton, 1997.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×