Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T22:41:57.043Z Has data issue: false hasContentIssue false

12 - BEC to BCS Crossover from Superconductors to Polaritons

from Part II - General Topics

Published online by Cambridge University Press:  18 May 2017

A. Edelman
Affiliation:
James Franck Institute and Department of Physics, University of Chicago, Chicago, IL 60637, USA
P. B. Littlewood
Affiliation:
James Franck Institute and Department of Physics, University of Chicago, Chicago
Nick P. Proukakis
Affiliation:
Newcastle University
David W. Snoke
Affiliation:
University of Pittsburgh
Peter B. Littlewood
Affiliation:
University of Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Randeria, M. 1995. Crossover from BCS theory to Bose-Einstein condensation. In: A., Griffin, D. W., Snoke, S., Stringari (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press.
[2] Alloing, M., Beian, M., Lewenstein, M., Fuster, D., González, Y., González, L., Combescot, R., Combescot, M., and Dubin, F. 2014. Evidence for a Bose-Einstein condensate of excitons. Europhys. Lett., 107, 10012.Google Scholar
[3] Randeria, M., Duan, J.-M.i, and Shieh, L.-Y. 1989. Bound states, Cooper pairing, and Bose condensation in two dimensions. Phys. Rev. Lett., 62, 981–984.
[4] Randeria, M., Duan, J.-M.i, and Shieh, L.-Y. 1990. Superconductivity in a twodimensional Fermi gas: evolution from Cooper pairing to Bose condensation. Phys. Rev. B, 41, 327–343.Google Scholar
[5] Fisher, Daniel, and Hohenberg, P. 1988. Dilute Bose gas in two dimensions. Phys. Rev. B, 37, 4936–4943.Google Scholar
[6] Fuchs, J. N., Recati, A., and Zwerger, W. 2004. Exactly solvable model of the BCSBEC crossover. Phys. Rev. Lett., 93, 090408.Google Scholar
[7] Tokatly, I. V. 2004. Dilute Fermi gas in quasi-one-dimensional traps: from weakly interacting fermions via hard core bosons to a weakly interacting Bose gas. Phys. Rev. Lett., 93, 090405.CrossRefGoogle Scholar
[8] Leggett, A. J. 1980. Diatomic molecules and Cooper pairs. In: A., Pkalski, J. A., Przystawa (eds), Modern Trends in the Theory of Condensed Matter, Proceedings of the XVI Karpacz Winter School. Berlin, Heidelberg, New York: Springer.
[9] Chin, C., Grimm, R., Julienne, P., and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225–1286.Google Scholar
[10] Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H., and Ketterle, W. 2005. Vortices and superfluidity in a strongly interacting Fermi gas. Nature, 435, 1047–1051.Google Scholar
[11] Parish, M. M., Mihaila, B., Timmermans, E. M., Blagoev, K. B., and Littlewood, P. B. 2005. BCS-BEC crossover with a finite-range interaction. Phys. Rev. B, 71, 064513.Google Scholar
[12] Ngampruetikorn, V., Levinsen, J., and Parish, M. M. 2013. Pair correlations in the two-dimensional Fermi gas. Phys. Rev. Lett., 111, 265301.Google Scholar
[13] Sommer, A. T., Cheuk, L. W., Ku, M. J. H., Bakr, W. S., and Zwierlein, M. W. 2012. Evolution of fermion pairing from three to two dimensions. Phys. Rev. Lett., 108, 045302.Google Scholar
[14] Levinsen, J., and Parish, M. M. 2015. Strongly interacting two-dimensional Fermi gases. In: Madison, K.W., Bongs, K., Carr, L., Rey, A. M. and Zhai, H. (Ed.), Annual Review of Cold Atoms and Molecules, Volume 3. World Scientific.
[15] Keldysh, L. V. 1995. Macroscopic coherent states of excitons in superconductors. In: A., Griffin, D. W., Snoke, S., Stringari (eds), Bose-Einstein Condensation. Cambridge: Cambridge University Press.
[16] Keldysh, L. V., and Kozlov, A. N. 1968. Collective properties of excitons in semiconductors. Soviet Physics JETP, 27, 521.Google Scholar
[17] Littlewood, P. B., and Zhu, X. 1996. Possibilities for exciton condensation in semiconductor quantum-well structures. Phys. Scr., 1996, 56–67.
[18] Zhu, X., Hybertsen, M. S., and Littlewood, P. B. 1996. Electron-hole system revisited: a variational quantum Monte Carlo study. Phys. Rev. B, 54, 13575–13580.Google Scholar
[19] Hanamura, E., and Haug, H. 1977. Condensation effects of excitons. Physics Reports, 33, 209–284.Google Scholar
[20] Yoshioka, K., Morita, Y., Fukuoka, K., and Kuwata-Gonokami, M. 2013. Generation of ultracold paraexcitons in cuprous oxide: a path toward a stable Bose-Einstein condensate. Phys. Rev. B, 88, 041201.Google Scholar
[21] Stolz, H., Schwartz, R., Kieseling, F., Som, S., Kaupsch, M., Sobkowiak, S., Semkat, D., Naka, N., Koch, T., and Fehske, H. 2012. Condensation of excitons in Cu2O at ultracold temperatures: experiment and theory. New J. Phys., 14, 105007.Google Scholar
[22] Yoshioka, Kosuke, Chae, Eunmi, and Kuwata-Gonokami, Makoto. 2011. Transition to a Bose-Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures. Nat. Comm., 2, 328.
[23] High, A. A., Leonard, J. R., Hammack, A. T., Fogler, M. M., Butov, L. V., Kavokin, A. V., Campman, K. L., and Gossard, A. C. 2012. Spontaneous coherence in a cold exciton gas. Nature, 483, 584–588.Google Scholar
[24] Oara, K. E., and Wolfe, J. P. 2000. Relaxation kinetics of excitons in cuprous oxide. Phys. Rev. B, 62, 12909–12922.Google Scholar
[25] Jang, J. I., Oara, K. E., and Wolfe, J. P. 2004. Spin-exchange kinetics of excitons in Cu2O: transverse acoustic phonon mechanism. Phys. Rev. B, 70, 195205.Google Scholar
[26] Jang, J. I., and Wolfe, J. P. 2006. Auger recombination and biexcitons in Cu2O: a case for dark excitonic matter. Phys. Rev. B, 74, 045211.Google Scholar
[27] Jang, J. I., and Wolfe, J. P. 2005. Biexcitons in the semiconductor Cu2O: an explanation of the rapid decay of excitons. Phys. Rev. B, 72, 241201.Google Scholar
[28] Wolfe, J. P., and Jang, J. I. 2014. The search for Bose-Einstein condensation of excitons in Cu2O: exciton-Auger recombination versus biexciton formation. New J. Phys., 16, 123048.CrossRefGoogle Scholar
[29] Zhu, Xuejun, Littlewood, P. B., Hybertsen, Mark S., and Rice, T. M. 1995. Exciton condensate in semiconductor quantum well structures. Phys. Rev. Lett., 74, 1633–1636.Google Scholar
[30] Ohashi, Y. 2005. BCS-BEC crossover in a gas of Fermi atoms with a p-wave Feshbach resonance. Phys. Rev. Lett., 94, 050403.Google Scholar
[31] Duncan, R., and Sá de Melo, C. 2000. Thermodynamic properties in the evolution from BCS to Bose-Einstein condensation for a d-wave superconductor at low temperatures. Phys. Rev. B, 62, 9675–9687.Google Scholar
[32] Bloch, I., Dalibard, J., and Nascimbène, S. 2012. Quantum simulations with ultracold quantum gases. Nat Phys, 8, 267–276.Google Scholar
[33] Nishida, Y., and Son, D. T. 2012. Unitary Fermi gas, _ expansion, and nonrelativistic conformal field theories. In: Zwerger, W. (ed), The BCS-BEC Crossover and the Unitary Fermi Gas. Heidelberg: Springer-Verlag.
[34] Braaten, E. 2012. Universal relations for fermions with large scattering length. In: Zwerger, Wilhelm (ed), The BCS-BEC Crossover and the Unitary Fermi Gas. Heidelberg: Springer-Verlag.
[35] Altland, A., and Simons, B. 2010. Condensed Matter Field Theory, 2nd edn. New York: Cambridge University Press.
[36] Nozières, P., and Schmitt-Rink, S. 1985. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. Low Temp. Phys., 59, 195–211.Google Scholar
[37] Engelbrecht, J. R., Randeria, M., and Sá de Melo, C. A. R. 1997. BCS to Bose crossover: broken-symmetry state. Phys. Rev. B, 55, 15153–15156.Google Scholar
[38] Sá de Melo, C., Randeria, M., and Engelbrecht, J. 1993. Crossover from BCS to Bose superconductivity: transition temperature and time-dependent Ginzburg-Landau theory. Phys. Rev. Lett., 71, 3202–3205.Google Scholar
[39] Petrov, D. S., Salomon, C.|Salomon, C., and Shlyapnikov, G. V. 2005. Scattering properties of weakly bound dimers of fermionic atoms. Phys. Rev. A, 71, 012708.Google Scholar
[40] Petrov, D. S., Salomon, C.|Salomon, C., and Shlyapnikov, G V. 2004. Weakly bound dimers of fermionic atoms. Phys. Rev. Lett., 93, 090404.Google Scholar
[41] Burovski, E., Kozik, E., Prokofv, N., Svistunov, B., and Troyer, M. 2008. Critical temperature curve in BEC-BCS crossover. Phys. Rev. Lett., 101, 090402.Google Scholar
[42] Baym, G., Blaizot, J.-P., Holzmann, M., Laloë, F., and Vautherin, D. 1999. The transition temperature of the dilute interacting Bose gas. Phys. Rev. Lett., 83, 1703– 1706.Google Scholar
[43] Haussmann, R., Rantner, W., Cerrito, S., and Zwerger, W. 2007. Thermodynamics of the BCS-BEC crossover. Phys. Rev. A, 75, 023610.Google Scholar
[44] Gorkov, L. P., and Melik-Barkhudarov, T. K. 1961. Contribution to the theory of superfluidity in an imperfect Fermi gas. Soviet Physics JETP, 13, 1018–1022Google Scholar
[J. Exptl. Theoret. Phys. (U.S.S.R.) 40, 1452–1458 (1961)].
[45] Heiselberg, H., Pethick, C. J., Smith, H., and Viverit, L. 2000. Influence of induced interactions on the superfluid transition in dilute Fermi gases. Phys. Rev. Lett., 85, 2418–2421.Google Scholar
[46] Tajima, H., Kashimura, T., Hanai, R., Watanabe, R., and Ohashi, Y. 2014. Uniform spin susceptibility and spin-gap phenomenon in the BCS-BEC-crossover regime of an ultracold Fermi gas. Phys. Rev. A, 89, 033617.Google Scholar
[47] Hanai, R., and Ohashi, Y. 2014. Heteropairing and component-dependent pseudogap phenomena in an ultracold Fermi gas with different species with different masses. Phys. Rev. A, 90, 043622.Google Scholar
[48] Popov, V. N. 1987. Functional Integrals and Collective Excitations. Cambridge: Cambridge University Press.
[49] Côté, R., and Griffin, A. 1993. Cooper-pair-condensate fluctuations and plasmons in layered superconductors. Phys. Rev. B, 48, 10404–10425.Google Scholar
[50] Belkhir, L., and Randeria, M. 1992. Collective excitations and the crossover from Cooper pairs to composite bosons in the attractive Hubbard model. Phys. Rev. B, 45, 5087–5090.Google Scholar
[51] Kosztin, I., Chen, Q., Kao, Y.-J., and Levin, K. 2000. Pair excitations, collective modes, and gauge invariance in the BCS–Bose-Einstein crossover scenario. Phys. Rev. B, 61, 11662–11675.Google Scholar
[52] Schmitt, F., Kirchmann, P. S., Bovensiepen, U., Moore, R. G., Rettig, L., Krenz, M., Chu, J. H., Ru, N., Perfetti, L., Lu, D. H., Wolf, M., Fisher,, I. R., and Shen, Z. X. 2008. Transient electronic structure and melting of a charge density wave in TbTe3. Science, 321, 1649–1652.Google Scholar
[53] Rettig, L., Chu, J. H., Fisher, I. R., Bovensiepen, U., and Wolf, M. 2014. Coherent dynamics of the charge density wave gap in tritellurides. Faraday Discuss., 171, 299–310.Google Scholar
[54] Hung, C.-L., Gurarie, V., and Chin, C. 2013. From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid. Science, 341, 1213–1215.CrossRefGoogle Scholar
[55] Rançon, A., Hung, Chen-Lung, Chin, Cheng, and Levin, K. 2013. Quench dynamics in Bose-Einstein condensates in the presence of a bath: theory and experiment. Phys. Rev. A, 88, 031601.Google Scholar
[56] Littlewood, P., and Varma, C. 1981. Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity. Phys. Rev. Lett., 47, 811–814.Google Scholar
[57] Browne, D. A., and Levin, K. 1983. Collective modes in charge-density-wave superconductors. Phys. Rev. B, 28, 4029–4032.Google Scholar
[58] Littlewood, P., and Varma, C. 1982. Amplitude collective modes in superconductors and their coupling to charge-density waves. Phys. Rev. B, 26, 4883–4893.Google Scholar
[59] Sooryakumar, R., and Klein, M. V. 1980. Raman scattering by superconducting-gap excitations and their coupling to charge-density waves. Phys. Rev. Lett., 45, 660–662.Google Scholar
[60] Pekker, D., and Varma, C. M. 2015. Amplitude/Higgs modes in condensed matter physics. Annu. Rev. Condens. Matter Phys., 6, 269–297.Google Scholar
[61] Méasson, M. A., Gallais, Y., Cazayous, M., Clair, B., Rodière, P., Cario, L., and Sacuto, A. 2014. Amplitude Higgs mode in the 2H–NbSe2 superconductor. Phys. Rev. B, 89, 060503.Google Scholar
[62] Matsunaga, R., Hamada, Y. I., Makise, K., Uzawa, Y., Terai, H., Wang, Z., and Shimano, R. 2013. Higgs amplitude mode in the BCS superconductors Nb1-xTixN induced by terahertz pulse excitation. Phys. Rev. Lett., 111, 057002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×