from Part 2 - From Theory to Algorithms
Published online by Cambridge University Press: 05 July 2014
In the previous chapter we described the SVM paradigm for learning halfspaces in high dimensional feature spaces. This enables us to enrich the expressive power of halfspaces by first mapping the data into a high dimensional feature space, and then learning a linear predictor in that space. This is similar to the AdaBoost algorithm, which learns a composition of a halfspace over base hypotheses. While this approach greatly extends the expressiveness of halfspace predictors, it raises both sample complexity and computational complexity challenges. In the previous chapter we tackled the sample complexity issue using the concept of margin. In this chapter we tackle the computational complexity challenge using the method of kernels.
We start the chapter by describing the idea of embedding the data into a high dimensional feature space. We then introduce the idea of kernels. A kernel is a type of a similarity measure between instances. The special property of kernel similarities is that they can be viewed as inner products in some Hilbert space (or Euclidean space of some high dimension) to which the instance space is virtually embedded. We introduce the “kernel trick” that enables computationally efficient implementation of learning, without explicitly handling the high dimensional representation of the domain instances. Kernel based learning algorithms, and in particular kernel-SVM, are very useful and popular machine learning tools. Their success may be attributed both to being flexible for accommodating domain specific prior knowledge and to having a well developed set of efficient implementation algorithms.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.