Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T22:08:13.735Z Has data issue: false hasContentIssue false

References and Further Reading

Published online by Cambridge University Press:  21 July 2022

Ian Tattersall
Affiliation:
Division of Anthropology, American Museum of Natural History, New York
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Primary Sources

DeSilva, J. (2021). First Steps: How Upright Walking Made Us Human. New York: Harper.Google Scholar
*Henke, W. and Tattersall, I. (eds) (2015). Handbook of Paleoanthropology, 3 vols, 2nd ed. Heidelberg: Springer.Google Scholar
*Klein, R. G. (2009). The Human Career: Human Biological and Cultural Origins, 3rd ed. Chicago: University of Chicago Press.Google Scholar
*Tattersall, I. (2012). Masters of the Planet: The Search for Our Human Origins. New York: Palgrave Macmillan.Google Scholar
*Tattersall, I. (2015). The Strange Case of the Rickety Cossack and Other Cautionary Tales from Human Evolution. New York: Palgrave Macmillan.Google Scholar
*Wood, B. A. (2019). Human Evolution: A Very Short Introduction, 2nd ed. Oxford: Oxford University Press.Google Scholar

Secondary Sources

Darwin, C. (1859). On the Origin of Species by Natural Selection, or The Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
*DeSalle, R. and Tattersall, I. (2018). Troublesome Science: The Misuse of Genetics and Genomics in Understanding Race. New York: Columbia University Press.Google Scholar
Dobzhansky, T. (1937). Genetics and the Origin of Species. New York: Columbia University Press.Google Scholar
Dobzhansky, T. (1944). On species and races of living and fossil man. American Journal of Physical Anthropology 2: 251265.CrossRefGoogle Scholar
Eldredge, N. (1971). The allopatric model and phylogeny in Paleozoic vertebrates. Evolution 25: 156167.Google Scholar
*Eldredge, N. (2015). Eternal Ephemera: Adaptation and the Origin of Species from the Nineteenth Century Through Punctuated Equilibria and Beyond. New York: Columbia University Press.Google Scholar
Eldredge, N. and Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In: Schopf, T. J. M. (ed.), Models in Paleobiology, pp. 82115. San Francisco: Freeman Cooper.Google Scholar
Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh 52: 399433.Google Scholar
*Gould, S. J. (2002). The Structure of Evolutionary Theory. Cambridge, MA: Belknap Press.Google Scholar
Hennig, W. (1966). Phylogenetic Systematics. Urbana: University of Illinois Press.Google Scholar
*Kampourakis, K. (2020). Understanding Evolution. Cambridge: Cambridge University Press.Google Scholar
Lamarck, L. B. de. (1809). Philosophie Zoologique. Paris: Dentu.Google Scholar
Mayr, E. (1942). Systematics and the Origin of Species, from the Viewpoint of a Zoologist. Cambridge, MA: Harvard University Press.Google Scholar
*Mayr, E. (1982). The Growth of Biological Thought. Cambridge, MA: Belknap Press.Google Scholar
Mendel, J. G. (1866). Versuche über Pflanzenhybriden. Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr, 1865, Abhandlungen: 347.Google Scholar
Nelson, G. (1979). Cladistic analysis and synthesis: Principles and definitions, with a historical note on Adanson‘s Familles des Plantes (1763–1764). Systematic Zoology 28: 229.Google Scholar
Tattersall, I. and Eldredge, N. (1977). Fact, theory, and fantasy in human paleontology. American Scientist 65: 204211.Google Scholar
*Tattersall, I. (2010). Paleontology: A Brief History of Life. Conshohocken: Templeton Foundation Press.Google Scholar
*Andel, T. H. van and Davies, W. (eds) (2003). Neanderthals and Modern Humans in the European Landscape during the Last Glaciation. Cambridge: McDonald Institute Monographs.Google Scholar
*Bradley, R. (2015). Paleoclimatology: Reconstructing Climates of the Quaternary. Oxford: Elsevier.Google Scholar
*Cohen, K. M. and Gibbard, P. L. (2011). Global Chronostratigraphical Correlation Table for the Last 2.7 Million Years. Cambridge: Subcommission on Quaternary Stratigraphy, International Commission on Stratigraphy.Google Scholar
*DeSalle, R. and Yudell, M. (2019). Welcome to the Genome: A User’s Guide to the Genetic Past, Present and Future, 2nd ed. Hoboken: Wiley.Google Scholar
*Higham, T. (2021). The World Before Us: The New Science Behind Our Human Origins. New Haven: Yale University Press.Google Scholar
*Richter, D. and Wagner, G. A. (2015). Chronometric methods in paleoanthropology. In: Henke, W and Tattersall, I (eds), Handbook of Paleoanthropology, pp. 317350, volume 1, 2nd ed. New York: Springer.Google Scholar
*Sponheimer, M. and Lee-Thorp, J. (2007). Hominin paleodiets: The contribution of stable isotopes. In: Henke, W and Tattersall, I (eds), Handbook of Paleoanthropology, pp. 554585, volume 1, 2nd ed. Heidelberg: Springer.Google Scholar
*Weber, G. W. (2105). Virtual anthropology and biomechanics. In: Henke, W and Tattersall, I (eds), Handbook of Paleoanthropology, pp. 937968, volume 1, 2nd ed. Heidelberg: Springer.Google Scholar
*Ungar, P. S. (2017) Evolution’s Bite: A Story of Teeth, Diet, and Human Origins. Princeton: Princeton University Press.Google Scholar
Ardrey, R. (1961). African Genesis. New York: Atheneum.Google Scholar
Black, D. (1931). Evidences of the use of fire by Sinanthropus. Bulletin of the Geological Society of China 11: 107108.Google Scholar
Boule, M. (1911–1913). L’homme fossile de La Chapelle-aux-Saints. Annales de Paléontologie 6–8: 1279.Google Scholar
Boule, M. (1937). Le Sinanthrope. L’Anthropologie 47: 122.Google Scholar
Broom, R. (1936). A new fossil anthropoid skull from South Africa. Nature 138: 486488.Google Scholar
Broom, R. and Robinson, J. T. (1949). Man contemporaneous with Swartkrans ape-man. American Journal of Physical Anthropology 8: 151156.Google Scholar
Busk, G. (1864). Pithecan priscoid man from Gibraltar. The Reader, July 23.Google Scholar
Dart, R. A. (1925). Australopithecus africanus: The man-ape of South Africa. Nature 115: 195199.Google Scholar
Dart, R. A. (1957). The osteodontokeratic culture of Australopithecus prometheus.Transvaal Museum Memoir 10: 1105.Google Scholar
Darwin, C. R. (1859). On the Origin of Species by Means of Natural Selection: Or the Preservation of Favoured Races in the Struggle for Life. London: John Murray.Google Scholar
Darwin, C. R. (1871). The Descent of Man in Relation to Sex. London: John Murray.Google Scholar
Dawson, C. and Woodward, A. S. (1913). On the discovery of a Palaeolithic human skull and mandible in a flint-bearing gravel overlying the Wealden (Hastings Beds) at Piltdown, Fletching, (Sussex). Quarterly Journal of the Geological Society of London 69: 117151.Google Scholar
Dobzhansky, T. (1944). On species and races of living and fossil man. American Journal of Physical Anthropology 2: 251265.Google Scholar
Dubois, E. (1894). Pithecanthropus erectus, eine menschenähnliche Uebergangsform aus Java. Batavia: Landesdruckerei.Google Scholar
Gregory, W. K. (1939). The South African fossil man-apes and the origin of the human dentition. Journal of the American Dental Association 26: 645.Google Scholar
Howell, F. C. (1951). The place of Neanderthal Man in human evolution. American Journal of Physical Anthropology 9: 379416.Google Scholar
Howell, F. C. (1952). Pleistocene glacial ecology and the evolution of “Classic Neanderthal” man. Southwestern Journal of Anthropology 8: 377410.CrossRefGoogle Scholar
Hrdlička, A. (1927). The Neanderthal phase of man. Journal of the Royal Anthropological Institute 57: 249274.Google Scholar
Huxley, T. H. (1863). Evidence as to Man’s Place in Nature. London: Williams & Norgate.Google Scholar
Keith, A. (1915). The Antiquity of Man. London: Williams and Norgate.Google Scholar
King, W. (1863). The Neanderthal skull. Anthropological Review 1: 393–94.Google Scholar
*Le Gros Clark, W. E. (1967). Man-Apes or Ape-Men? The Story of Discoveries in Africa. New York: Holt, Rinehart and Winston.Google Scholar
Mayr, E. (1950). Taxonomic categories in fossil hominids. Cold Spring Harbor Symposia on Quantitative Biology 15: 109118.Google Scholar
Mortillet, G. de (1883). Le Préhistorique: Antiquité de l’Homme. Paris: Reinwald.Google Scholar
Schaaffhausen, H. (1858). Zur Kentniss der ältesten Rassenschädel. [On the crania of the most ancient races of man]. Natural History Reviews 1: 155176 (1861 translation, with introduction by G. Busk).]Google Scholar
Schwalbe, G. (1899). Studien über Pithecanthropus erectus Dubois. Morphologische Anthropologie 1: 16228.Google Scholar
Schwalbe, G. (1900). Der Neanderthalschädel. Jahrbuch der Verhandlung Altets Rheinlande 106: 172.Google Scholar
*Spencer, F. (1990). Piltdown: A Scientific Forgery. London: Natural History Museum/Oxford University Press.Google Scholar
*Tattersall, I. (2009). The Fossil Trail: How We Know What We Think We Know about Human Evolution, 2nd ed. New York: Oxford University Press.Google Scholar
*Theunissen, B. (1988). Eugene Dubois and the Ape-Man from Java: The History of the First “Missing Link” and Its Discoverer. Dordrecht: Kluwer Academic.Google Scholar
Weidenreich, F. (1947). Facts and speculations concerning the origin of Homo sapiens. American Anthropologist 49: 187203.Google Scholar
Woodward, A. S. (1921). A new cave man from Rhodesia, South Africa. Nature 108: 371372.Google Scholar
Abbate, E., Albianelli, A., Azzaroli, A., et al. (1998). A one-million-year-old Homo cranium from the Danakil (Afar) Depression of Eritrea. Nature 393: 458460.Google Scholar
Alemseged, Z., Wynn, J. G., Kimbel, W. H., et al. (2005). A new hominin from the Basal Member of the Hadar Formation at Dikika, Ethiopia, and its geological context. Journal of Human Evolution 49: 499514.Google Scholar
Arsuaga, J.-L., Martinez, I., Gracia, A., Carretero, J.-M., and Carbonell, E. (1993). Three new human skulls from the Sima de los Huesos Middle Pleistocene site in Sierra de Atapuerca, Spain. Nature 362: 534537.Google Scholar
Asfaw, B., Gilbert, W. H., Beyene, Y., et al. (2002). Remains of Homo erectus from Bouri, Middle Awash, Ethiopia. Nature 416: 317320.Google Scholar
Berger, L. R., de Ruiter, D. J., Churchill, S. E., et al. (2010). Australopithecus sediba: A new species of Homo-like australopith from South Africa. Science 328: 195204.Google Scholar
Berger, L. R., Hawks, J., de Ruiter, D. J., et al. (2015). Homo naledi, a new species of the genus Homo from the Dinaledi Chamber, South Africa. eLife 2015(4): e09560.Google Scholar
Brace, C. L. (1964). The fate of the “Classic” Neanderthals: A consideration of hominid catastrophism. Current Anthropology 5: 343.Google Scholar
Brown, F., Harris, J., Leakey, R. E. F., and Walker, A. C. (1985). Early Homo erectus skeleton from west Lake Turkana, Kenya. Nature 316: 788792.Google Scholar
Brown, P., Sutikna, T., Morwood, M. J. et al. (2004). A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature 431: 10551061.Google Scholar
Brunet, M., Guy, F., Pilbeam, D., et al. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418: 145151.Google Scholar
Cann, R. L., Stoneking, M., and Wilson, A. C. (1987). Mitochondrial DNA and human evolution. Nature 325: 3136.Google Scholar
Conroy, G. C., Jolly, C. J., Cramer, D., and KaIb, J. E. (1978). Newly discovered fossil hominid skull from the Afar Depression, Ethiopia. Nature 275: 6770.Google Scholar
Day, M. H., Leakey, R. E. F., Walker, A. C., and Wood, B. A. (1976). New hominids from East Turkana, Kenya. American Journal of Physical Anthropology 45: 369436.Google Scholar
*Gibbons, A. (2006). The First Human: The Race to Discover Our Earliest Ancestors. New York: Doubleday.Google Scholar
Groves, C. P. and Mazak, V. (1975). An approach to the taxonomy of the Hominidae: Gracile Villafranchian hominids of Africa. Casopis pro Mineralogii Geologii 20: 225247.Google Scholar
Hailie-Selassie, Y. Laimer, B. L. , Alene, M., et al. (2010). An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia. Proceedings of the National Academy of Sciences, USA 107: 1212112126.Google Scholar
Haile-Selassie, Y., Melillo, S. M., Vazzana, A., Benazzi, F., and Ryan, T. M. (2019). A 3.8-million-year-old hominin cranium from Woranso-Mille, Ethiopia. Nature 573, 214219.Google Scholar
*Harcourt-Smith, W. E. H. (2015). The origins of bipedal locomotion. In: Henke, W and Tattersall, I (eds), Handbook of Paleoanthropology, pp. 19191960, volume 3, 2nd ed. New York: Springer.Google Scholar
Howell, F. C. (1978). Hominidae. In: Maglio, V. J. and Cooke, H. B. S. (eds), Evolution of African Mammals, pp. 154248. Cambridge, MA: Harvard University Press.Google Scholar
Isaac, G. L. (1978). The food-sharing behavior of proto-human hominids. Scientific American 238: 90108.Google Scholar
Johanson, D. C. (ed.) (1982). Pliocene hominid fossils from Hadar, Ethiopia. American Journal of Physical Anthropology 57(4): 373724.Google Scholar
Johanson, D. C. and White, T. D. (1979). A systematic assessment of early African hominids. Science 202: 321330.Google Scholar
Johanson, D. C., White, T. D., and Coppens, Y. (1978). A new species of the genus Australopithecus (Primates: Hominidae) from the Pliocene of eastern Africa. Kirtlandia 28: 114.Google Scholar
*Johanson, D. J. and Edey, M. A. (1981). Lucy: The Beginnings of Humankind. New York: Simon and Schuster.Google Scholar
Harmand, S., Lewis, J., Feibel, C., et al. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521: 310315.Google Scholar
Hublin, J.-J., Sirakov, N., Aldeias, V., et al. (2020). Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581: 299302.Google Scholar
*Kalb, J. (2001). Adventures in the Bone Trade: The Race to Discover Human Ancestors in Ethiopia’s Afar Depression. New York: Copernicus Books.Google Scholar
Kimbel, W. H., Johanson, D. C., and Rak, Y. (1997). Systematic assessment of a maxilla of Homo from Hadar, Ethiopia. American Journal of Physical Anthropology 103: 235262.Google Scholar
*Kimbel, W. H., Rak, Y., and Johanson, D. C. (2004). The Skull of Australopithecus afarensis. New York: Oxford University Press.Google Scholar
Krings, M., Geisert, H., Schmitz, R. W., Krainitzki, H., and Pääbo, S. (1999). DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen. Proceedings of the National Academy of Sciences, USA 96: 55815585.Google Scholar
Leakey, L. S. B. (1959). A new fossil skull from Olduvai. Nature 184: 491493.Google Scholar
Leakey, L. S. B., Evernden, J. F., and Curtis, G. H. (1961). Age of Bed I, Olduvai Gorge, Tanganyika. Nature 191: 478479.Google Scholar
Leakey, L. S. B., Tobias, P. V., and Napier, J. R. (1964). A new species of the genus Homo from Olduvai Gorge. Nature 202: 710.Google Scholar
Leakey, M. D. (1966). A review of the Oldowan culture from Olduvai Gorge, Tanzania. Nature 210: 462466.Google Scholar
*Leakey, M. D. and Harris, J. M. (eds) (1987). Laetoli: A Pliocene Site in Northern Tanzania. Oxford: Clarendon Press.Google Scholar
Leakey, M. G., Feibel, C. S., McDougall, I., Ward, C., and Walker, A. C. (1995). New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376: 565571.CrossRefGoogle ScholarPubMed
Leakey, M. G., Spoor, F. Brown, F. H., et al. (2001). New hominin genus from eastern Africa shows diverse middle Pliocene lineages. Nature 410: 433440.Google Scholar
Leakey, R. E. F. (1970). New hominid remains and early artefacts from Northern Kenya. Nature 226: 226228.Google Scholar
Leakey, R. E. F. (1971). Further evidence of Lower Pleistocene hominids from East Rudolf, Kenya. Nature 231: 241245.Google Scholar
Leakey, R. E. F. and Walker, A. C. (1976). Australopithecus, Homo erectus and the single species hypothesis. Nature 261: 572574.Google Scholar
*Lewin, R. (1987). Bones of Contention: Controversies in the Search for Human Origins. New York: Simon and Schuster.Google Scholar
Lordkipanidze, D., Jashashvili, T., Vekua, A., et al. (2007). Postcranial evidence from early Homo from Dmanisi, Georgia. Nature 449: 305310.Google Scholar
Lumley, M.-A. de and Lordkipanidze, D. (2006). L’homme de Dmanissi (Homo georgicus), il y a 1 810 000 ans. Paléontologie humaine et Préhistoire 5: 273281.Google Scholar
Macchiarelli, R., Bondioli, L. , Chech, M. , et al. (2004). The Late Early Pleistocene human remains from Buia, Danakil Depression, Eritrea. Rivista Italiana di Paleontologia e Stratigrafia 110: 133144.Google Scholar
McPherron, S., Alemseged, Z., Marean, C., et al. (2010). Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466: 857860.Google Scholar
*Pääbo, S. (2014). Neanderthal Man: In Search of Lost Genomes. New York: Basic Books.Google Scholar
*Reader, J. (1981). Missing Links: The Hunt for Earliest Man. Boston: Little, Brown.Google Scholar
Rightmire, G. P., Lordkipanidze, D., and Vekua, A. (2006). Anatomical descriptions, comparative studies, and evolutionary significance of the hominin skulls from Dmanisi, Republic of Georgia. Journal of Human Evolution 50: 115141.Google Scholar
Senut, B., Pickford, M. Gommery, D., et al. (2001). First hominid from the Miocene (Lukeino Formation, Kenya). Earth and Planetary Sciences 332: 137144.Google Scholar
*Tattersall, I. (2009). The Fossil Trail: How We Know What We Think We Know about Human Evolution, 2nd ed. New York: Oxford University Press.Google Scholar
Tobias, P. V., and von Koenigswald, G. H. R.. (1964). Comparison between the Olduvai hominines and those of Java and some implications for hominid phylogeny. Nature 204: 515518.Google Scholar
Tocheri, M. W., Orr, C. M., Larson, S. G., et al. (2007). The primitive wrist of Homo floresiensis and its implications for hominin evolution. Science 317: 17431745.CrossRefGoogle ScholarPubMed
Walker, A. C. and Leakey, R. (1993). The Nariokotome Homo erectus skeleton. Cambridge, MA: Harvard University Press.Google Scholar
White, T. Suwa, D. G., and Asfaw, B. (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371: 306312.Google Scholar
White, T. D., Asfaw, B., DeGusta, D., et al. (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423: 742747.Google Scholar
Wolpoff, M. H., Wu, X., and Thorne, A. G. (1984). Modern Homo sapiens origins: A general theory of hominid evolution involving evidence from East Asia. In: Smith, F. H and Spencer, F (eds), The Origins of Modern Humans: A World Survey of the Fossil Evidence, pp. 411483. New York: Alan R. LissGoogle Scholar
*Wood, B. (1991). Koobi Fora Research Project, Vol. 4: Hominid Cranial Remains. Oxford: Clarendon Press.Google Scholar
Wood, B. (1992). Origin and evolution of the genus Homo. Nature, 355: 783790.Google Scholar
Wood, B. and Collard, M. (1999). The human genus. Science 284: 6571.CrossRefGoogle ScholarPubMed
Zwir, I., Del-Val, C., Hintsanen, M., et al. (2021). Evolution of genetic networks for human creativity. Molecular Psychiatry. https://doi.org.10.1038/s41380-021–01097-y.Google Scholar
Boehme, M. (2020). Ancient Bones: Unearthing the Astonishing New Story of How We Became Human. Vancouver: Greystone Books.Google Scholar
Brunet, M., Guy, F., Pilbeam, D., et al. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418: 145151.Google Scholar
Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex. London: John Murray.Google Scholar
Haile-Selassie, Y., Melillo, S. M., Vazzana, A., Benazzi, F., and Ryan, T. M. (2019). A 3.8-million-year-old hominin cranium from Woranso-Mille, Ethiopia. Nature 573, 214219.Google Scholar
*Harcourt-Smith, W. E. H. (2015). The origins of bipedal locomotion. In: Henke, W and Tattersall, I (eds), Handbook of Paleoanthropology, pp. 19191960, volume 3, 2nd ed. New York: Springer.Google Scholar
Harmand, S., Lewis, J., Feibel, C., et al. (2015). 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521: 310315.Google Scholar
Hart, D. and Sussman, R. W. (2009). Man the Hunted: Primates, Predators, and Human Evolution. Boulder: Westview Press.Google Scholar
Heinzelin, J. de, Clark, J. D. , White, T. , et al. (1999). Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284: 625629.Google Scholar
Johanson, D. et al. (1982). Special Issue: Pliocene hominid fossils from Hadar, Ethiopia. American Journal of Physical Anthropology 57(4): 373724.Google Scholar
Kappelman, J., Ketcham, R., Pearce, S., et al. (2016). Perimortem fractures in Lucy suggest mortality from fall out of tall tree. Nature 537: 503507.Google Scholar
Köhler, M. and Moyà-Solà, S. (1997). Ape-like or hominid-like? The positional behavior of Oreopithecus bambolii reconsidered. Proceedings of the National Academy of Science, USA 94(21): 1174711750.Google Scholar
Leakey, M. G., Feibel, C. S., McDougall, I., Ward, C., and Walker, A. C. (1995). New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376: 565571.Google Scholar
McPherron, S., Alemseged, Z., Marean, C., et al. (2010). Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia. Nature 466: 857860.Google Scholar
Pruetz, J. D. and Bertolani, P. (2007). Savanna chimpanzees, Pan troglodytes verus, hunt with tools. Current Biology 17: 412417.Google Scholar
*Stern, J. T. (2000). Climbing to the top: A personal memoir of Australopithecus afarensis. Evolutionary Anthropology 9(3): 113133.Google Scholar
*Tattersall, I. (2016). Prerequisites for hominid bipedality. In: Ribot Trafí, F. (ed.), Homenaje al Dr. José Gibert Clols. Una vida dedicada a la ciencia y al conocimiento de los primeros europeos, pp. 8391. Granada: Publicaciones Diputación de Granada.Google Scholar
*Tomasello, M. and Herrmann, E. (2010). Ape and human cognition: What’s the difference? Current Directions in Psychological Science 19(1). https://doi.org/10.1177/0963721409359300.Google Scholar
White, T. D., Suwa, G., and Asfaw, B. (1994). Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 371: 306312.Google Scholar
White, T. D., Suwa, G., and Asfaw, B. (1995). Corrigendum: Australopithecus ramidus, a new species of early hominid from Aramis, Ethiopia. Nature 375: 88.Google Scholar
White, T. D. , et al. (2009). Special Issue on Ardipithecus ramidus. Science 326(5949): 5106.Google Scholar
Wynn, J. G., Sponheimer, M., Kimbel, W. H., et al. (2013). Diet of Australopithecus afarensis from the Pliocene Hadar Formation, Ethiopia. Proceedings of the National Academy of Sciences, USA 110: 1049510500.Google Scholar
Zollikofer, C., Ponce de León, M. , Lieberman, D. , et al. (2005). Virtual cranial reconstruction of Sahelanthropus tchadensis. Nature 434: 755759.CrossRefGoogle ScholarPubMed
Aiello, L. and Wheeler, P. (1995). The expensive-tissue hypothesis: The brain and the digestive system in human and primate evolution. Current Anthropology 36: 199212.Google Scholar
Berger, L. R., de Ruiter, D. J., Churchill, S. E., et al. (2010). Australopithecus sediba: A new species of Homo-like australopith from South Africa. Science 328: 195204.Google Scholar
Cunningham, D. L., Graves, R. R., Westcott, D. J., and McCarthy, R. C. (2018). The effect of ontogeny on estimates of KNM-WT 15000’s adult body size. Journal of Human Evolution 121: 119127.Google Scholar
Gabunia, L., Vekua, A., Lordkipanidze, D., et al. (2000). Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting, and age. Science 288: 10191025.Google Scholar
Graves, R. R., Lupo, A. C., McCarthy, R. C., Wescott, D. J., and Cunningham, D. L. (2010). Just how strapping was KNM-WT 15000? Journal of Human Evolution 59: 542554Google Scholar
Lordkipanidze, D., Jashashvili, T., Vekua, A., et al. (2007). Postcranial evidence from early Homo from Dmanisi, Georgia. Nature 449: 305310.CrossRefGoogle ScholarPubMed
Lordkipanidze, D., Ponce de León, M. S., Margvelashvili, A., et al. (2013). A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science 342: 326331.Google Scholar
Matsu’ura, S., Kondo, M., Danhara, Y., et al. (2020). Age control of the first appearance datum for Javanese Homo erectus in the Sangiran area. Science 367: 210214.Google Scholar
Rizal, Y., Westaway, K. E., Zaim, Y., et al. (2020). Last appearance of Homo erectus at Ngandong, Java, 117,000–108,00 years ago. Nature 577: 381385.Google Scholar
Ruxton, G. and Wilkinson, D. M. (2012). Endurance running and its relevance to scavenging by early hominins. Evolution 67: 861867.Google Scholar
Schwartz, J. H. and Tattersall, I. (2000). What constitutes Homo erectus? Acta Anthropologica Sinica 19: 2125.Google Scholar
Schwartz, J. H., Tattersall, I., and Zhang, C. (2014). Comment on “A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo.Science 344: 360-a.Google Scholar
*Tattersall, I. (2015). Homo ergaster and its contemporaries. In: Henke, W. and Tattersall, I. (eds), Handbook of Paleoanthropology, pp. 21672188, volume 3, 2nd ed. Heidelberg: Springer.Google Scholar
Tattersall, I. (2017). Species, genera, and phylogenetic structure in the human fossil record: A modest proposal. Evolutionary Anthropology 26: 116118.Google Scholar
Villmoare, B., Kimbel, W. H., Seyoum, C., et al. (2015). Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 347: 13521355.Google Scholar
Walker, A. C. and Leakey, R. (1993). The Nariokotome Homo erectus skeleton. Cambridge, MA: Harvard University Press.Google Scholar
Wheeler, P. (1991). The thermoregulatory advantages of hominid bipedalism in open equatorial environments: The contribution of increased convective heat loss and cutaneous evaporative cooling. Journal of Human Evolution 21: 107115.Google Scholar
*Wood, B. (1991). Koobi Fora Research Project, vol. 4: Hominid Cranial Remains. Oxford: Clarendon Press.Google Scholar
Wrangham, R. (2009). Catching Fire: How Cooking Made Us Human. New York: Basic Books.Google Scholar
Bocherens, H., Drucker, G., Billiou, D., Patou-Mathis, M. and Vandermeersch, B. (2005). Isotopic evidence for diet and subsistence pattern of the Saint-Césaire I Neanderthal: Review and use of a multi-source mixing model. Journal of Human Evolution 49: 7187.Google Scholar
Duveau, J., Berillon, G., Verna, C., Laisné, G., and Cliquet, D. (2019). The composition of a Neandertal social group revealed by the hominin footprints at Le Rozel (Normandy, France). Proceedings of the National Academy of Sciences, USA 116: 1940919414.Google Scholar
Hoffmann, D. L., Standish, C. D., Garcia-Diez, M., et al. (2018). U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 359: 912915Google Scholar
Higham, T., Douka, K., Wood, R., et al. (2014). The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512: 306309.Google Scholar
Hublin, J. J., Sirakov, N., Aldeias, V., et al. (2020). Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581: 299302.Google Scholar
Jaubert, J., Verheyden, S., Genty, D., et al. (2016). Early Neanderthal constructions deep in Bruniquel Cave in southwestern France. Nature 434: 111115.Google Scholar
Joordens, J., d’Errico, F. , Wesselingh, F. , et al. (2015). Homo erectus at Trinil on Java used shells for tool production and engraving. Nature 518: 228231.Google Scholar
Lalueza-Fox, C., Rosas, A., Estalrrich, A., et al. (2011). Genetic evidence for patrilocal mating behavior among Neandertal groups. Proceedings of the National Academy of Sciences, USA 108: 250253.Google Scholar
*Lombard, M. (2012). Thinking through the Middle Stone Age of sub-Saharan Africa. Quaternary International 270: 140155.Google Scholar
Mayoral, E., Díaz-Martínez, I., Duveau, J., et al. (2021). Tracking late Pleistocene Neandertals on the Iberian coast. Scientific Reports 11: 4103.Google Scholar
Meyer, M., Arsuaga, J. L., de Filippo, C., et al. (2016). Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531: 504507.Google Scholar
Pearce, E., Stringer, C., and Dunbar, R. I. M. (2013). New insights into differences in brain organization between Neanderthals and anatomically modern humans. Proceedings of the Royal Society B 280: 20130168.Google Scholar
Ponce de León, M. S. and Zollikofer, C. P. E. (2001). Neandertal cranial ontogeny and its implications for late hominid diversity. Nature 412: 534538.Google Scholar
Radovčić, D., Sršen, A. O., Radovčić, J., and Frayer, D. W. (2015). Evidence for Neandertal jewelry: Modified white-tailed eagle claws at Krapina. PLoS One 10(3): e0119802.Google Scholar
Sawyer, S., Renauda, G., Viola, B., et al. (2015). Nuclear and mitochondrial DNA sequences from two Denisovan individuals. Proceedings of the National Academy of Sciences, USA 112: 1569615700.Google Scholar
Slimak, L., Fietzke, J., Geneste, J.-M., and Ontanon, R. (2018). Comment on “U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art.Science 361: eaau1371.Google Scholar
Slon, V., Hopfe, C., Weiss, C. L., et al. (2017). Neandertal and Denisovan DNA from Pleistocene sediments. Science 356: 605608.Google Scholar
*Sykes, R. W. (2020). Kindred: Neanderthal Life, Love, Death and Art. London: Bloomsbury Sigma.Google Scholar
Thieme, H. (1997). Lower Palaeolithic hunting spears from Germany. Nature 385: 807810.Google Scholar
Weyrich, L. S., Duchene, S., Soubrier, J., et al. (2017). Neandertal behaviour, diet, and disease inferred using ancient DNA preserved in dental calculus. Nature 544: 357361.Google Scholar
Zwir, I., Del-Val, C., Hintsanen, M., et al. (2021). Evolution of genetic networks for human creativity. Molecular Psychiatry. https://doi.org.10.1038/s41380-021-01097-y.Google Scholar
Aubert, M., Brumm, A., Ramli, M., et al. (2014). Pleistocene cave art from Sulawesi, Indonesia. Nature 514: 223227.Google Scholar
Aubert, M., Setiawan, P., Oktaviana, A., et al. (2018). Palaeolithic cave art in Borneo. Nature 564: 254257.Google Scholar
Aubert, M., Lebe, R., Oktaviana, A. A., et al. (2019). Earliest hunting scene in prehistoric art. Nature 576: 442445.Google Scholar
*Balter, M. (2011). Was North Africa the launch pad for modern human migrations? Science 331: 2023.Google Scholar
Berwick, R. C. and Chomsky, N. (2016). Why Only Us: Language and Evolution. Cambridge, MA: MIT Press.Google Scholar
Bouzouggar, A., Barton, N., Vanhaeren, M., et al. (2007). 82,000-year-old shell beads from North Africa and implications for the origins of modern human behavior. Proceedings of the National Academy of Sciences, USA 104: 99649969.Google Scholar
Brown, K. S., Marean, C. W., Herries, A. I.R., et al. (2009). Fire as an engineering tool of early modern humans. Science 325: 859862.Google Scholar
Fu, Q., Posth, C., Hadjdinjak, M., et al. (2016). The genetic history of Ice Age Europe. Nature 534: 200204.Google Scholar
Hadjdinjak, M., Mafessoni, F., Skov, L., et al. (2021). Initial Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592: 253257.Google Scholar
Henshilwood, C. S. , d’Errico, F. , Vanhaeren, M. , van Niekerk, K. , and Jacobs, Z. (2004). Middle Stone Age shell beads from South Africa. Science 303: 404407.Google Scholar
Henshilwood, C. S., d’Errico, F. , and Watts, I. (2009). Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. Journal of Human Evolution 57: 2747.Google Scholar
Henshilwood, C. S. , d’Errico, F. , van Niekerk, K. , et al. (2011). A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science 334: 219222.Google Scholar
McDougall, I., Brown, F. H., and Fleagle, J. G. (2005). Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733736.Google Scholar
Posth, C., Renaud, G., Mittnik, A., et al. (2016). Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a late glacial population turnover in Europe. Current Biology 26: 827833.Google Scholar
Rasmussen, M., Guo, X., Wang, Y., et al. (2011). An aboriginal Australian genome reveals separate human dispersals into Asia. Science 334: 9498.Google Scholar
*Reich, D. (2018). Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past. New York: Vintage Books.Google Scholar
Rito, T., Vieira, D., Silva, M., et al. (2019). A dispersal of Homo sapiens from southern to eastern Africa immediately preceded the out-of-Africa migration. Scientific Reports 9: 4728Google Scholar
*Schwartz, J. H. and Tattersall, I. (2010). Fossil evidence for the origin of Homo sapiens. Yearbook of Physical Anthropology 53: 94121.Google Scholar
*Stringer, C. (2016). The origin and evolution of Homo sapiens. Philosophical Transactions of the Royal Society B 371: 20150237.Google Scholar
Tattersall, I. (2018). Brain size and the emergence of modern human cognition. In: Schwartz, J. H. (ed.), Rethinking Human Evolution. Cambridge, MA: MIT Press, pp. 319334.Google Scholar
Tattersall, I. (2019). The Minimalist Program and the origin of language: A view from paleoanthropology. Frontiers in Psychology 10: 677. https://doi.org/10.3389/fpsyg.2019.00677Google Scholar
Wadley, L. (2012). Two “moments in time” during Middle Stone Age occupations of Sibudu, South Africa. Southern African Humanities 24: 7997.Google Scholar
White, T. D., Asfaw, B., DeGusta, D., et al. (2003). Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423: 742747.Google Scholar
Willerslev, E. and Meltzer, D. J. (2021). Peopling of the Americas as inferred from ancient genomics. Nature 594: 356364.Google Scholar
Yang, M. A., Fan, X., Sun, B., et al. (2020). Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369: 282288.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×