[1] R., Truell, C., Elbaum, and B.B., Chick. Ultrasonic methods in solid state physics. Academic Press, 1969.
[2] R.T., Beyer and S.V., Letcher. Physical ultrasonics. Academic Press, 1969.
[3] B., Lüthi. Physical acoustics in the solid state. Springer, 2005.
[4] J.F., Nye. Physical properties of crystals. Oxford, 1979.
[5] L.D., Landau and E.M., Lifshitz. Theory of elasticity. 3rd ed. Butterworth Heinemann, 1986.
[6] F.I., Fedorov. Theory of elastic waves in crystals. Oxford, 1986.
[7] D.C., Wallace. Thermodynamics of crystals. Wiley, 1972.
[8] R.L., Melcher. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston Vol. XII. Academic Press, 1976. Chap. 1.
[9] G., Arfken. Mathematical methods for physicists. 3rd ed. Academic Press, 1985.
[10] K.D., Swartz and A.V., Granato. “Experimental test of the Laval Raman Viswanathan theory of elasticity.” In: J. Acoust. Soc. Amer 38 (1965), p. 824.
[11] B.A., Auld. Acoustic fields and waves in solids. Second. Vol. 1. Krieger, 1990.
[12] W.A., Wooster. A textbook on crystal physics. Cambridge University Press, 1938.
[13] W., Voigt. Lehrbuch der kristallphysik. Johnson Reprint Corporaton, 1966.
[14] M., Levy. “Handbook of Elastic Properties of Solids, Liquids, and Gases.” In: ed. by M., Levy, H.E., Bass, and R.R., Stern. Vol. II. Academic Press, 2001. Part 1, Chapter 1.
[15] D.B., Litvin. “The icosahedral point groups.” In: Acta Cryst. 47 (1991), p. 70.
[16] P.S., Spoor. “Elastic properties of novel materials using PVDF film and resonance ultrasound spectroscopy.” PhD thesis. Pennsylvania State University, 1997.
[17] M.A., Chernikov, H.R., Ott, A., Bianchi, A., Migliori, and T.W., Darling. “Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: Evidence for transverse elastic isotropy.” In: Phys. Rev. Lett 80 (1998), p. 321.
[18] D., Levine, T.C., Lubensky, S., Ostlund, S., Ramaswamy, P.J., Steinhardt, and J., Toner. “Elasticity and dislocations in pentagonal and icosahedral quasicrystals.” In: Phys. Rev. Lett. 54 (1985), p. 1520.
[19] Y., Ishii. “Phason softening and structural transitions in icosahedral quasicrystals.” In: Phys. Rev. B 45 (1992), p. 5228.
[20] M., Oxborrow and C.L., Henley. “Random square-triangle tilings.” In: J. Non-Cryst. Solids 153 (1993), p. 210.
[21] M., Oxborrow and C.L., Henley. “Random square-triangle tilings: A model for twelvefold-symmetric quasicrystals.” In: Phys. Rev. B 48 (1993), p. 6966.
[22] K., Foster, S.L., Fairburn, R.G., Leisure, S., Kim, D., Balzar, G., Alers, and H., Ledbetter. “Acoustic study of texture in polycrystalline brass.” In: Acoust. Soc. Amer 105 (1999), pp. 2663–2668.
[23] R., Lakes. “Foam structures with a negative poissons ratio.” In: Science 235 (1987), p. 1038.
[24] R.F.S., Hearmon. An introduction to applied anisotropic elasticity. Oxford University Press, 1961.
[25] S.P., Timoshenko and J.N., Goodier. Theory of elasticity. McGraw-Hill, 1970.
[26] S.G., Lekhnitskii. Theory of elasticity of an anisotropic elastic body. Holden-Day, 1963.
[27] G., Simmons and H., Wang. Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press, 1971.
[28] H., Ledbetter. “Handbook of elastic properties of solids, liquids, and gases.” In: ed. by M., Levy and L., Furr. Vol. III. Academic Press. Chap. 11, p. 313.
[29] W.C., Cady. Piezoelectricity. Vol. One. Dover, 1964.
[30] J.R., Neighbours and G.E., Schacher. “Determination of elastic constants from soundvelocity measurements in crystals of general symmetry.” In: J. Appl. Phys. 38 (1967), p. 5366.
[31] H., Ledbetter, R.G., Leisure, A., Migliori, J., Betts, and H., Ogi. “Low-temperature elastic and piezoelectric constants of paratellurite (α-TeO2).” In: J. Appl. Phys 96 (2004), p. 6201.
[32] E.B., Christoffel. “Uber die Fortpflanzung von Stossen durch elastische feste Korper.” In: Ann. Mat. Pura Appl. 8 (1877), p. 193.
[33] D., Royer and E., Dieulesaint. Elastic waves in solids I. Springer, 1996.
[34] E.S., Fisher and C.J., Renken. “Single-crystal elastic moduli and the hcp bcc transformation in Ti, Zr, and Hf.” In: Phys. Rev. 135 (1964), A482.
[35] M.H., Manghnani. “Elastic constants of single-crystal rutile under pressures to 7.5 kilobars.” In: J. Geophy. Res. 74 (1969), p. 4317.
[36] W.J., Alton and A.J., Barlow. “Acoustic-wave propagation in tetragonal crystals and measurement of elastic constants of calcium molybate.” In: J. Appl. Physics. 38 (1967), p. 3817.
[37] H.J., McSkimin. “Temperature dependence of the adiabatic elastic moduli of singlecrystal alpha uranium.” In: J. Appl. Phys. 31 (1960), p. 1627.
[38] J.D., Jackson. Classical electrodynamics. Wiley, 1999.
[39] C., Kittel. Introduction to solid state physics. 8th edn. Wiley, 2005.
[40] N.W., Ashcroft and N.D., Mermin. Solid state physics. Saunders, 1976.
[41] M.P., Marder. Condensed matter physics. Wiley, 2010.
[42] G., Burns. Solid state physics. Academic Press, 1985.
[43] M., Born and K., Huang. Dynamical theory of crystal lattices. Clarendon Press, 1954.
[44] H., Böttger. Principles of the theory of lattice dynamics. Physik-Verlag, 1983.
[45] M.T., Dove. Introduction to lattice dynamics. Cambridge University Press, 1993.
[46] B.T.M., Willis and A.W., Pryor. Thermal vibratons in crystallography. Cambridge University Press, 1975.
[47] W., Cochran. “Lattice vibrations.” In: Rep. Prog. Phys. 26 (1963), p. 1.
[48] F., Herman. “Lattice vibrational spectrum of germanium.” In: J. Phys. Chem. Solids. 8 (1959), p. 405.
[49] G.P., Srivastava. The physics of phonons. Taylor Francis Group, 1990.
[50] Y.-L, Chen and D.-P., Yang. Mössbauer effect in lattice dynamics. Wiley-VCH, 2007.
[51] M., Ortiz and R., Phillips. “Advances in applied mechanics.” In: ed. by E. van der, Giessen and T.Y., Wu. Vol. 36. Academic Press, 1999. Chap. Nanomechanics of defects in solids.
[52] S.K., Sinha. “Lattice dynamics of copper.” In: Phys. Rev. 143 (1966), p. 422.
[53] J.L., Warren, J.L., Yarnell, G., Dolling, and R.A., Cowley. “Lattice dynamics of diamond.” In: Phys. Rev. 158 (1967), p. 805.
[54] M.E., Straumanis and L.S., Yu. “Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase.” In: Acta Cryst. A25 (1969), p. 676.
[55] W.C., Overton Jr. and J., Gaffney. “Temperature variation of the elastic constants of cubic elements. I. Copper.” In: Phys. Rev. 98 (1955), p. 969.
[56] C., Kittel and H., Kroemer. Thermal physics. 2nd ed. Freeman, 1980.
[57] F., Reif. Fundamentals of statistical and thermal physics. McGraw Hill, 1965.
[58] J.P., Sethna. Entropy, order parameters, and complexity. Oxford University Press, 2006.
[59] A., Einstein. “The Planck theory of radiation and the theory of specific heat.” In: Ann. d. Physik 22 (1906), p. 180.
[60] P., Debye. “The theory of specific warmth.” In: Ann. d. Physik 39 (1912), p. 789.
[61] D.K., Hsu and R.G., Leisure. “Elastic constants of palladium and beta-phase palladium hydride between 4 and 300-K.” In: Phys. Rev. B 20 (1979), p. 1339.
[62] M., Moss, P.M., Richards, E.L., Venturini, J.H., Grieske, and E.J., Graeber. “Hydrogen contribution to the heat capacity of single phase, face centered cubic scandium deuteride.” In: J. Chem. Phys. 84 (1986), p. 956.
[63] L.A., Nygren and R.G., Leisure. “Elastic constants of β-phase PdHx over the temperature range 4–300 K.” In: Phys. Rev. B 37 (1988), p. 6482.
[64] M.A., Omar. Elementary solid state physics. Addison Wesley, 1975.
[65] O.L., Anderson. “A simplified method for calculating Debye temperatures from elastic constants.” In: J. Phys. Chem. Solids 24 (1963), p. 909.
[66] R.A., Robie and J.L., Edwards. “Some Debye temperatures from single-crystal elastic constant data.” In: J. Appl. Phys. 37 (1966), p. 2659.
[67] J.J., Adams. “Elastic constants of monocrystal iron form 3 to 500K.” MA thesis. Physics Dept., Colorado State Univ., Fort Collins, CO USA, 2006.
[68] J.D., Maynard. “The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement.” In: J. Acoust. Soc. Am. 91 (1992), p. 1754.
[69] D.I., Bolef and J.C., Miller. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VIII. Academic Press, 1971. Chap. 3.
[70] N.F., Foster. “Cadium sulphide evaporated-layer transducers.” In: Proc. IEEE 53 (1965), p. 1400.
[71] J. de, Klerk. “Physical acoustics”. In: ed. by W.P., Mason. Vol. IVA. Academic Press, 1966. Chap. 5.
[72] R.G., Leisure and D.I., Bolef. “CW microwave spectrometer for ultrasonic paramagnetic resonance.” In: Rev. Sci. Instrum. 39 (1968), p. 199.
[73] H.A., Spetzler, G., Chen, S., Whitehead, and I.C., Getting. “A new ultrasonic interferometer for the determination of equation of state parameters of sub-millimeter single crystals.” In: PAGEOPH 141 (1993), p. 341.
[74] Q., Zhou, S., Lau, D., Wu, and K., Shung. “Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.” In: Prog. Mater. Sci. 56 (2011), p. 139.
[75] E.P., Pakadakis and T.P., Lerch. “Handbook of elastic properties of solids, liquids and gases.” In: ed. by M., Levy, H.E., Bass, and R., Stern. Vol. I. Academic Press, 2001. Chap. 2, p. 39.
[76] S., Eros and J.R., Reitz. “Elastic constants by the ultrasonic pulse echo method.” In: J. Appl. Phys. 29 (1958), p. 683.
[77] H.J., McSkimin. “Pulse superposition method for measuring ultrasonic wave velocities in solid.” In: J. Acoust. Soc. Am. 33 (1961), p. 12.
[78] H.J., McSkimin and P., Andreatch. “Analysis of the pulse superposition method for measuring ultrasonic wave velocities as a function of temperature and pressure.” In: J. Acoust. Soc. Am. 34 (1962), p. 609.
[79] E.P., Papadakis. “Ultrasonic phase velocity by pulse-echo-overlap method incorporating diffraction phase corrections.” In: J. Acoust. Soc. Amer. 42 (1967), p. 1045.
[80] C., Pantea, D.G., Rickel, A., Migliori, R.G., Leisure, J.Z., Zhang, Y.S., Zhao, S., El-Khatib, and B.S., Li. “Digital ultrasonic pulse-echo overlap system and algorithm for unambiguous determination of pulse transit time.” In: Rev. Sci Instrum. 76 (2005), p. 114902.
[81] A.E., Petrova and S.M., Stishov. “A digital technique for measuring the velocity and attenuation of sound.” In: Instrum. Exp. Tech. 52 (2009), p. 609.
[82] H., Niesler and I., Jackson. “Pressure derivatives of elastic wave velocities from ultrasonic interferometric measurements on jacketed polycrystals.” In: J. Acoust. Soc. Am. 86 (1989), p. 1573.
[83] D.I., Bolef and M., Menes. “Measurement of elastic constants of RbBr, RbI, CsBr, and CsI by an ultrasonic cw resonance technique.” In: J. Appl. Phys. 31 (1960), p. 1010.
[84] D.I., Bolef. “Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta.” In: J. Appl. Phys. 32 (1961), p. 100.
[85] D.I., Bolef and J.D., Klerk. “Anomalies in the elastic constants and thermal expansion of chromium single crystals.” In: Phys. Rev. 129 (1963), p. 1063.
[86] D.I., Bolef and M., Menes. “Nuclear magnetic resonance acoustic absorption in KI and KBr.” In: Phys. Rev. 114 (1959), p. 1441.
[87] D.I., Bolef. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IVA. Academic Press, 1966. Chap. 3.
[88] R.G., Leisure and D.I., Bolef. “Temperarure dependence of ultrasonic paramagnetic resonance in MgO.Fe2+.” In: Phys. Rev. Lett. 19 (1967), p. 957.
[89] W.C., Cady. Piezoelectricity. Vol. Two. Dover, 1964.
[90] A.S., Nowick and B.S., Berry. Anelastic relaxation in crystalline solids. Academic Press, 1972.
[91] W., Hermann and H.-G., Sockel. “Handbook of elastic properties of solids, liquids and gases.” In: ed. by M., Levy, H.E., Bass, and R.R., Stern. Vol. I. Academic Press, 2001. Chap. 13.
[92] I., Ohno. “Free vibration of a rectangular parallelepiped crystal and its application to determination of elastic constants of orthorhombic crystals.” In: J. Phys. Earth 24 (1976), p. 355.
[93] A., Migliori, J.L., Sarrao, W.M., Visscher, T.M., Bell, M., Lei, Z., Fisk, and R.G., Leisure. “Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of solids.” In: Physica B: Conden. Matt. 183 (1993), p. 1.
[94] A., Migliori and J.L., Sarrao. Resonant ultrasound spectroscopy. Wiley, 1997.
[95] A., Migliori and J.D., Maynard. “Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens.” In: Rev. Sci. Instrum. 76 (2005), p. 121301.
[96] R.G., Leisure and F.A., Willis. “Resonant ultrasound spectroscopy.” In: J. Condens. Matter 9 (1997), p. 6001.
[97] H., Ekstein and T., Schiffman. “Free Vibrations of Isotropic Cubes and Nearly Cubic Parallelepipeds.” In: J. Appl. Phys. 27 (1956), p. 405.
[98] R., Holland and E.P. Eer, Nisse. “Variational evaluation of admittances of multielectroded 3-dimensional piezoelectric structures.” In: IEEE Trans. Sonics Ultrasonics SU-15 (1968), p. 119.
[99] H.H., Demarest, Jr. “Cube resonance method to determine the elastic constants of solids.” In: J. Acoust. Soc. Am. 49 (1971), p. 768.
[100] P., Heyliger, A., Jilani, H., Ledbetter, R.G., Leisure, and C.-L., Wang. “Elastic constants of isotropic cylinders using resonant ultrasound.” In: J. Acoust. Soc. Am. 94 (1993), p. 1482.
[101] W.M., Visscher, A., Migliori, T.M., Bell, and R.A., Reinert. “On the normal modes of free vibrations of inhomogeneous and anisotropic elastic objects.” In: J. Acoust. Soc. Am. 90 (1991), p. 2154.
[102] H., Goldstein. Classical mechanics. Addison-Wesley, 1959.
[103] E.P., Eer Nisse. “Resonances of 1-dimensional composite piezoelectric and elastic structures.” In: IEEE Trans. Sonics Ultrasonics SU-14 (1967), p. 59.
[104] W.H., Press, B.P., Flannery, S.A., Teukolsky, and W.T., Vetterling. Numerical recipes. Cambridge University Press, 1986.
[105] https://nationalmaglab.org/user-resources/all-measurement-techniques.
[106] J.R., Taylor. Classical mechanics. University Science Books, 2005.
[107] J.B., Mehl. “Analysis of resonance standing-wave measurements.” In: J. Acoust. Soc. Am. 64 (1978), p. 1523.
[108] R.G., Leisure, K., Foster, J.E., Hightowoer, and D.S., Agosta. “Internal friction studies by resonant ultrasound spectroscopy.” In: Mater. Sci. Eng. A 370 (2004), p. 34.
[109] C., Thomsen, J., Strait, Z., Vardeny, H.J., Maris, J., Tauc, and J.J., Hauser. “Coherent phonon generation and detection by picosecond light pulses.” In: Phys. Rev. Lett. 53 (1984), p. 989.
[110] C., Thomsen, H.T., Grahn, H.J., Maris, and J., Tauc. “Surface generation and detection of phonons by picosecond light pulses.” In: Phys. Rev. B 34 (1986), p. 4129.
[111] H.T., Grahn, H.J., Maris, and J., Tauc. “Picosecond ultrasonics.” In: IEEE J. Quantum Electron. 25 (1989), p. 2562.
[112] G.L., Eesley, B.M., Clemens, and C.A., Paddock. “Generation and detection of picosecond acoustic pulses in thin metal films.” In: Appl. Phys. Lett. 50 (1987), p. 717.
[113] O.B., Wright and K., Kawashima. “Coherent phonon detection from ultrafast surface vibrations.” In: Phys. Rev. Lett. 1668 (1992), p. 2029.
[114] T.C., Zhu, H.J., Maris, and J., Tauc. “Attenuation of longitudinal-acoustic phonons in amorphous SiO2 at frequencies up to 440 GHz.” In: Phys. Rev. B 44 (1991), p. 4281.
[115] C., Thomsen, H.T., Grahn, H.J., Maris, and J., Tauc. “Picosecond interferometric technique for study of phonons in the Brillouin frequency range.” In: Optics Commun. 60 (1986), p. 55.
[116] A., Devos and R., Côte. “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect.” In: Phys. Rev. B 70 (2004), p. 125208.
[117] P., Emery and A., Devos. “Strong oscillations detected by picosecond ultrasonics in silicon: Evidence for an electronic-structure effect.” In: Appl. Phys. Lett. 89 (2006), p. 191904.
[118] A., Devos, M., Foret, S., Ayrinhac, P., Emery, and B., Rufflé. “Hypersound damping in vitreous silica measured by picosecond acoustics.” In: Phys. Rev. B 77 (2008), 100201.
[119] R., Côte and A., Devos. “Refractive index, sound velocity and thickness of thin transparent films from multiple angles picosecond ultrasonics.” In: Rev. Sci. Instrum. 76 (2005), p. 053906.
[120] H., Ogi, T., Shagawa, N., Nakamura, M., Hirao, H., Okada, and N., Kihara. “Elastic constant and Brillouin oscillations in sputtered vitreous SiO2 thin films.” In: Phys. Rev. B 78 (2008), p. 134204.
[121] A., Nagakubo, H., Ogi, H., Ishida, M., Hirao, T., Yokoyama, and T., Nisihara. “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics.” In: J. Appl. Phys. 118 (2015), p. 014307.
[122] T., Dehoux and B., Audoin. “Non-invasive optoacoustic probing of the density and stiffness of single biological cells.” In: J. Appl. Phys. 112 (2012), p. 124702.
[123] F., Pérez-Coda, R.J., Smith, E., Moradi, L., Marques, K.F., Webb, and M., Clark. “Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells.” In: Appl. Opt. 54 (2015), p. 8388.
[124] K., Shinokita, K., Reimann, M., Woerner, T., Elsaesser, R., Hey, and C., Flytzanis. “Strong amplification of coherent acoustic phonons by intraminiband currents in a semiconductor superlattice.” In: Phys. Rev. Lett. 116 (2016), p. 075504.
[125] H., Ledbetter. “Materials at low temperatures.” In: ed. by R.P., Reed and A.F., Clark. American Society for Metals, 1983. Chap. Elastic properties, pp. 1–45.
[126] A.B., Bhatia. Ultrasonic absorption. Clarendon Press, 1967.
[127] C.Y., Ho and R.E., Taylor. Thermal expansion of solids. ASM International, 1998.
[128] VASP, The Vienna ab initio simulation package, is available at www.vasp.at/.
[129] Quantum Espresso is available at www.quantum-espresso.org/.
[130] R., Arroyave, D., Shin, and Z.-K., Liu. “Ab initio thermodynamic properties of stoichiometric phases in the NiAl system.” In: Acta Mater. 53 (2005), p. 1809.
[131] J.A., Garber and A.V., Granato. “Theory of the temperature dependence of secondorder elastic constants in cubic materials.” In: Phys. Rev. B 11 (1975), p. 3990.
[132] G., Steinle-Neumann, L., Stixrude, and R.E., Cohen. “First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure.” In: Phys. Rev. B 60 (1999), p. 791.
[133] R., Golesorkhtabar, P., Pavone, J., Spitaler, P., Puschnig, and C., Drax. “ElaStic: a tool for calculating second-order elastic constants from first principles.” In: Comput. Phys. Commun. 184 (2013), p. 1861.
[134] H., Ledbetter. “Sound velocities, elastic constants: temperature dependence.” In: Mater. Sci. Eng., A 442 (2006), p. 31.
[135] E.I., Isaev, S.I., Simak, A.S., Mikhaylushkin, Yu. Kh., Vekilov, E. Yu., Zarechnaya, L., Dubrovinsky, N., Dubrovinskaia, M., Merlini, M., Hanfland, and I.A., Abrikosov. “Impact of lattice vibrations on equation of state of the hardest boron phase.” In: Phys. Rev. B 83 (2011), p. 132106.
[136] G., Liebfried and W., Ludwig. “Solid state physics.” In: ed. by F., Sietz and D., Turnbull. Vol. 12. Academic Press, 1961, p. 276.
[137] S., Shang, Y., Wang, and Z.K., Liu. “First-principles calculations of phonon and thermodynamic properties in the boron-alkaline earth metal binary systems: B-Ca, B-Sr, and B-Ba.” In: Phys. Rev. B 75 (2007), p. 024302.
[138] Y., Wang, J.J., Wang, H. Zhang, V.R., Manga, S.L., Shang, L.-Q., Chen, and Z.-K., Liu. “A first-principles approach to finite temperature elastic constants.” In: J. Phys. Condens. Matter 22 (2010), p. 225404.
[139] K., Kadas, L., Vitos, R., Ahuja, B., Johansson, and J., Kollar. “Temperature dependent elastic properties of alpha beryllium from first principles.” In:Phys. Rev. B 76 (2007), p. 235109.
[140] W.J., Golumbfskie, R., Arroyave, D., Shin, and Z.-K., Liu. “Finite-temperature thermodynamic and vibrational properties of Al-Ni-Y compounds via first-principles calculations.” In: Acta Mater. 54 (2006), p. 2291.
[141] L.D., Landau and E.M., Lifshitz. Statistical physics. Pergamon Press, 1980.
[142] M., Sob, M., Friak, D., Legut, J., Fiala, and V., Vitek. “The role of ab initio electronic structure calculations in studies of the strength of materials.” In: Mater. Sci. Eng. A387 (2004), p. 148.
[143] A., Wang, S.-L., Shang, M., He, Y., Du, L., Chen, R., Zhang, D., Chen, B., Fan, F., Meng, and Z.-K., Liu. “Temperature-dependent elastic stiffness constants of fcc-based metal nitrides from first-principles calculations.” In: J. Mater. Sci. 49 (2014), p. 424.
[144] D.C., Wallace. “Thermoelasticity of stressed materials and comparison of various elastic constants.” In: Phys. Rev. 162 (1967), p. 776.
[145] A.F., Jankowski and T., Tsakalakos. “The effect of strain on the elastic constants of noble metals.” In: J.Phys, F: Met. Phys 15 (1985), p. 1279.
[146] F., Birch. “Finite elastic strain of cubic crystals.” In: Phys. Rev. 71 (1947), p. 809.
[147] Y., Hiki, J.F., Thomas Jr., and A.V., Granato. “Anharmonicity in noble metals: some thermal properties.” In: Phys. Rev. 153 (1967), p. 764.
[148] K., Brugger. “Generalized Gruneisen parameters in the anisotroyic Debye model.” In: Phys. Rev. 137 (1965), A1826.
[149] Z., Wu and R.M., Wentzcovitch. “Quasiharmonic thermal elasticity of crystals: an analytical approach.” In: Phys. Rev. B. 83 (2011), p. 184115.
[150] D.J., Safarik and R.B., Schwarz. “Evidence for highly anharmonic low-frequency vibrational modes in bulk amorphous Pd40Cu40P20.” In: Phys. Rev. B 80 (2009), p. 094109.
[151] A, Migliori, H., Ledbetter, R.G., Leisure, C., Pantea, and J.B., Betts. “Diamonds elastic stiffnesses from 322 K to 10 K.” In: J. Appl. Phys. 104 (2008), p. 053512.
[152] H.S., Robertson. Statistical thermophysics. Prentice Hall, 1993.
[153] B.T., Bernstein. “Electron contribution to the temperature dependence of the elastic constants of cubic metals. I. Normal metals.” In: Phys. Rev. 132 (1963), p. 50.
[154] G.A., Alers. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Part A. Academic Press, 1966. Chap. 7.
[155] Y.P., Varshni. “Temperature dependence of the elastic constants.” In: Phys. Rev. B 2 (1970), p. 3952.
[156] H., Ledbetter. “Relationship between bulk-modulus temperature-dependence and thermal expansivity.” In: Phys. Stat. Solidi B 181 (1994), p. 81.
[157] P., Toledano and V., Dmitriev. Reconstructive phase transitions. World Scientific, 1996.
[158] J.-C., Toledano and P., Toledano. Landau theory of phase transitions. World Scientific, 1987.
[159] W., Rehwald. “Study of structural phase-transitions by means of ultrasonic experimets.” In: Advances in Physics 22 (1973), p. 721,
[160] M.A., Carpenter and E.K.H., Salje. “Elastic anomalies in minerals due to structural phase transitions.” In: Eur. J. Mineral. 10 (1998), p. 693.
[161] F., Cordero, F., Trequattrini, V.B., Barbeta, R.F., Jardim, and M.S., Torikachvili. “Anelastic spectroscopy study of the metal-insulator transition of Nd1-xEuxNiO3.” In: Phys. Rev. B 84 (2011), p. 125127.
[162] A.V., Granato, K.L., Hultman, and K.-F., Huang. “Ultrasonic response to two and four level quantum systems.” In: J. Physique Colloque C10 (1985), pp. C10–C23.
[163] C., Zener. “Stress induced preferential orientation of pairs of solute atoms in metallic solid solution.” In: Phys. Rev. 71 (1947), p. 34.
[164] F.M., Mazzolai, P.G., Bordoni, and F.A., Lewis. “Elastic energy-dissipation effects in alpha+beta and beta-phase composition ranges of the palladium-hydrogen system.” In: J. Phys. F: Met. Phys. 11 (1981), p. 337.
[165] R.G., Leisure, T., Kanashiro, P.C., Riedi, and D.K., Hsu. “Hydrogen motion in singlecrystal palladium hydride as studied ultrasonically.” In: Phys. Rev. B 27 (1983), p. 4872.
[166] J.L., Snoek. “Mechanical after effect and chemical constitution.” In: Physica 6 (1939), p. 591.
[167] R.G., Leisure, S., Kern, F.R., Drymiotis, H., Ledbetter, A., Migliori, and J.A., Mydosh. “Complete elastic tensor through the first-order transformation in U2Rh3Si5.” In: Phys. Rev. Lett. 95 (2005), p. 075506.
[168] B., Lüthi, M.E., Mullen, and E., Bucher. “Elastic constants in singlet ground-state Systems: PrSb and Pr.” In: Phys. Rev. Lett. 31 (1973), p. 95.
[169] R.S., Lakes. Viscoelastic solids. CRC Press, 1998.
[170] M., O'Donnell, E.T., Jaynes, and J.G., Miller. “Kramers-Kronig relationship between ultrasonic-attenuation and phase-velocity.” In: J. Acoust. Soc. Am. 69 (1981), p. 696.
[171] V., Mangulis. “Kramers-Kronig or dispersion relations in acoustics.” In: J. Acoust. Soc. Am. 36 (1964), p. 211.
[172] V.L., Ginzberg. “Concerning the general relationship between absorption and dispersion of sound waves.” In: Akust.Zh. 1 (1955). English translation in Soviet Phys. Acoust. 1, 32 (1957), p. 32.
[173] J.P., Wittmer, H., Xu, O., Benzerara, and J., Baschnagel. “Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited.” In: Molecular Physics 113 (2015), p. 2881.
[174] D., Chandler. Introduction to modern statistical mechanics. Oxford University Press, 1987.
[175] A.A., Gusev, M.M., Zeldner, and U.W., Suder. “Fluctuation formula for elastic constants.” In: Phys. Rev. B, Brief Reports 54 (1996), p. 1.
[176] C., Zener. Elasicity and anelasicity of metals. University of Chicago Press, 1948.
[177] M., Callens-Raadschelders, R. De, Batist, and R., Gevers. “Debye relaxation equations for a standard linear solid with high relaxation strength.” In: J. Materials Sci. 12 (1977), p. 251.
[178] K., Lücke. “Ultrasonic attenuation caused by thermoelastic heat flow.” In: J. Appl. Phys. 27 (1956), p. 1433.
[179] B.C., Daly, K., Kang, Y., Yang, and D.G., Cahill. “Picosecond ultrasonic measurements of attenuation of longitudinal acoustic phonons in silicon.” In: Phys. Rev. B 80 (2009), p. 174112.
[180] H.E., Bömmel and K., Dransfield. “Excitation and attenuation of hypersonic waves in quartz”. In: Phys. Rev. 117 (1960), p. 1245.
[181] J. de, Klerk. “Behavior of coherent microwave phonons at low temperatures in Al2O3 using vapor-deposited thin-film piezoelectric transducers”. In: Phys. Rev. 139 (1965), A 1635.
[182] S., Stoffels, E., Autizi, R. Van, Hoof, S., Severi, R., Puers, A., Witvrouw, and H.A.C., Tilmans. “Physical loss mechanisms for resonant acoustical waves in boron doped poly-SiGe deposited with hydrogen dilution.” In: J. Appl. Phys. 108 (2010), p. 084517.
[183] L., Landau and G., Rumer. “Uber schallabsorption in festen korpern.” In: Phys. Z. Sowjetunion 11 (1937), p. 18.
[184] P.G., Klemens. “Physical acoustics.” In: ed. by W.P., Mason. Vol. III Part B. Academic Press, 1965. Chap. 5.
[185] H.J., Maris. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VIII. Academic Press, 1971. Chap. 6.
[186] A., Akhieser. “On the absorption of sound in solids.” In: J. Phys. (Moscow) 1 (1939), p. 277.
[187] T.O, Woodruff and H., Ehrenreich. “Absorption of sound in insulators.” In: Phys. Rev. 123 (1961), p. 1553.
[188] H.E., Bömmel. “Ultrasonic attenuation in superconducting lead.” In: Phys. Rev. 96 (1954), p. 220.
[189] W.P., Mason. “Ultrasonic attenuation due to lattice-electron interaction in normal conducting metals.” In: Phys. Rev. 97 (1955), p. 557.
[190] R.W., Morse. “Ultrasonic attenuation in metals by electron relaxation.” In: Phys. Rev. 97 (1955), p. 1716.
[191] A.B., Pippard. “Ultrasonic attenuation in metals.” In: Phil. Mag. 46 (1955), p. 1104.
[192] A.B., Pippard. “Theory of ultrasonic attenuation in metals and magnetoacoustic oscillations.” In: Proc. Roy. Soc. A 257 (1960), p. 165.
[193] J., Bardeen, L.N., Cooper, and J.R., Schrieffer. “Theory of superconductivity.” In: Phys. Rev. 108 (1957), p. 1175.
[194] M., Gottlieb, M., Garbuny, and C.K., Jones. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VII. Academic Press, 1970. Chap. 1.
[195] J.A., Rayne and C.K., Jones. “Physical, acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VII. Academic Press, 1970. Chap. 3.
[196] M., Levy. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. XX. Academic Press, 1992. Chap. 1.
[197] B.W., Roberts. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Pt. B. Academic Press, 1968. Chap. 10.
[198] L.R., Testardi and J.H., Condon. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. VIII. Academic Press, 1971. Chap. 2.
[199] Y., Eckstein. “Ultrasonic attenuation in antimony. 1. Geometric resonance.” In: Phys. Rev. 129 (1963), p. 12.
[200] M.P., Greene, A.R., Hoffman, A. Houghton, and J.J., Quinn. “Ultrasonic attenuation in oblique magnetic fields.” In: Phys. Rev. 156 (1967), p. 798.
[201] M.H., Cohen, M.J., Harrison, and W.A., Harrison. “Magnetic-field dependence of the ultrasonic attentuation in metals.” In: Phys. Rev. 117 (1960), p. 937.
[202] J.R., Hook and H.E., Hall. Solid state physics. Wiley, 1991.
[203] H.P., Myers. Introductory solid state physics. Taylor and Francis, 1991.
[204] M., Mongy. “Quantum oscillations of ultrasonic attenuation in gold.” In: J. Phys. Chem. Solids 33 (1972), p. 1355.
[205] W.D., Wallace and H.V., Bohm. “Quantum oscillations in attenuation of transverse ultrasonic waves in field-cooled chromium.” In: J. Phys. Chem. Solids 29 (1968), p. 721.
[206] A., Granato and K., Lücke. “Theory of mechanical damping due to dislocations.” In: J. Appl. Phys. 27 (1956), p. 583.
[207] T.A., Read. “Internal friction of single crystals of copper and zinc.” In: Trans. Am. Inst. Mining Met. Engrs. 143 (1941), p. 30.
[208] J.S., Koehler. Imperfections in nearly perfect crystals. Wiley, 1952.
[209] A.S., Nowick. “Internal friction and dynamic modulus of cold-worked metals.” In: J. Appl. Phys. 25 (1954), p. 1129.
[210] A.V., Granato and K., Lücke. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Part A. Academic Press, 1966. Chap. 6.
[211] R.M., Stern and A.V., Granato. “Overdamped resonance of dislocations in copper.” In: Acta Met. 10 (1962), p. 358.
[212] C., Wert and C., Zener. “Interstitial atomic difusion coefficients.” In: Phys. Rev. 76 (1949), p. 1169.
[213] C.R., Ko, K., Salama, and J.M., Roberts. “Effect of hydrogen on the temperaturedependence of the elastic constants of vanadium single crystals.” In: J. Appl. Phys. 51 (1980), p. 1014.
[214] J., Buchholz, J., Völkl, and G., Alefeld. “Anomalously small elastic Curie constant of hydrogen in tantulam.” In: Phys. Rev. Lett. 30 (1973), p. 318.
[215] K., Foster, J.E., Hightower, R.G., Leisure, and A.V., Skripov. “Ultrasonic attenuation and dispersion due to hydrogen motion in the C15 Laves-phase compound TaV2Hx.” In: J. Phys.:Condensed Matter 13 (2001), p. 7327.
[216] R.G., Leisure, T. Kanashiro, P.C., Riedi, and D.K., Hsu. “An ultrasonic study of stressinduced ordering of hydrogen in single-crystal palladium hydride.” In: J. Phys. F: Met. Phys. 13 (1983), p. 2025.
[217] R.G., Leisure, L.A., Nygren, and D.K., Hsu. “Ultrasonic relaxation rates in palladium hydride and palladium deuteride.” In: Phys. Rev. B 33 (1986), p. 8325.
[218] J.O., Fossum and K., Fossum. “Measurements of ultrasonic attenuation and velocity in Verneuil-grown and flux grown SrTiO3.” in: J. Phys. C: Solid State Phys. 18 (1985), p. 5549.
[219] L.D., Landau and I.M., Khalatnikov. In: Sov. Phys. Dokl. 96 (1954), p. 469.
[220] J.O., Fossum. “A phenomenological analysis of ultrasound near phase transitions.” In: J. Phys. C: Solid State Phys. 18 (1985), p. 5531.
[221] A., Abragam. The principles of nuclear magnetism. Oxford University Press, 1961.
[222] C.P., Slichter. The principles of magnetic resonancee. Harper and Row, 1963.
[223] R.A., Alpher and R.J., Rubin. “Magnetic dispersion and attenuation of sound in conducting fluids and solids.” In: J. Acoust. Soc. Am. 26 (1954), p. 452.
[224] J., Buttet, E.H., Gregory, and P.K., Bailey. “Nuclear acoustic resonance in aluminum via coupling to magnetic dipole moment.” In: Phys. Rev. Lett. 23 (1969), p. 1030.
[225] R.G., Leisure, D.K., Hsu, and B.A., Seiber. “Nuclear-acoustic-resonance absorption and dispersion in aluminum.” In: Phys. Rev. Lett. 30 (1973), p. 1326.
[226] R., Guermeur, J., Joffrin, A., Levelut, and J., Penne. “Mesure de la variation de la vitesse de phase dune onde ultrasonore se propageant dans un cristal paramagnetique.” In: Phys. Lett. 13 (1964), p. 107.
[227] E.B., Tucker. “Physical acoustics.” In: ed. by W.P., Mason. Vol. IV Pt. A. Academic Press, 1966. Chap. 2.
[228] R.C., Zeller and R.O., Pohl. “Thermal conductivity and specific heat of noncrystalline solids.” In: Phys. Rev. B 4 (1971), p. 2029.
[229] P.W., Anderson, B.I., Halperin, and C.M., Varma. “Anomalous low-temperature thermal properties of glasses and spin glasses.” In: Phil. Mag. 25 (1972), p. 1.
[230] W.A., Phillips. “Tunneling states in amorphous solids.” In: J. Low Temp. Phys. 7 (1972), p. 351.
[231] J., Jäckle. “Ultrasonic attenuation in glasses at low temperatures.” In: Z. Physik 257 (1972), p. 212.
[232] P., Doussineau, C., Frénois, R.G., Leisure, A., Levelut, and J.-Y., Prieur. “Amorphouslike acoustical properties of Na doped beta Al2O3.” In: J. Phys (Paris) 41 (1980), p. 1193.
[233] S.N., Coppersmith and B., Golding. “Low-temperature acoustic properties of metallic glasses.” In: Phys. Rev. B 47 (1993), p. 4922.
[234] A.J., Leggett and D.C., Vural. “Tunneling two-level systems model of lowtemperature properties of glasses: Are smoking-gun tests possible?” In: J. Phys. Chem. B 117 (2013), p. 12966.
[235] D.R., Queen, X., Liu, J., Karel, T.H., Metcalf, and F., Hellman. “Excess specific heat in evaporated amorphous silicon.” In: Phys. Rev. Lett. 110 (2013), p. 135901.
[236] G.S., Kino. Acoustic waves: devices, imaging and analog signal processing. Prentice- Hall, 1987.
[237] T.F., Hueter and R.H., Bolt. Sonics. Wiley, 1955.
[238] C.G., Montgomery, R.H., Dicke, and E.M., Purcell. Principles of microwave circuits. The Institute of Engineering and Technolog, 1987, p. 67.
[239] E.P., Papadakis. “Ultrasonic diffraction loss and phase change in anisoptric materials.” In: J. Acoust. Soc. Am. 40 (1966), p. 863.
[240] E.P., Papadakis. “Physical acoustics.” In: ed. by W.P., Mason and R.N., Thurston. Vol. XI. Academic Press, 1975. Chap. 3.
[241] P.R., Saulson. “Thermal noise in mechanical experiments.” In: Phys. Rev. D 42 (1990), p. 2437.
[242] J.R., Neighbours and G.A., Alers. “Elastic constants of silver and gold.” In: Phys. Rev. 111 (1958), p. 707.
[243] Y.S., Touloukian, R.K., Kirby, R.E., Taylor, and P.D., Desa. Thermophysical properies of matter. Vol. 12. Plenum, 1975.
[244] Y., Hiki and A.V., Granato. “Anharmonicity in noble metals; higher order elastic constants.” In: Phys. Rev. 144 (1966), p. 411.
[245] J.M., Lang, Jr. and Y.M., Gupta. “Experimental determination of third-order elastic constants of diamond.” In: Phys. Rev. Lett. 106 (2011), p. 125502.
[246] C., Giles, C., Adriano, A.F., Lubambo C., Cusatis I., Mazzaro and M.G., Honnicke. “Diamond thermal expansion measurement using transmitted X-ray backdiffraction.” In: J. Synchrotron Radiation 12 (2005), p. 349.
[247] J., Philip and M.A., Breazeale. “Third order elastic constants and Grüneisen parameters of silicon and germanium between 3 and 300K.” In: J. Appl. Phys. 54 (1983), p. 752.
[248] K., Salama and G.A., Alers. “Third-order elastic constants of copper at low temperature.” In: Phys. Rev. 161 (1967), p. 673.