Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T06:23:28.935Z Has data issue: false hasContentIssue false

63 - Impact of deforestation and forest regrowth on vascular epiphyte diversity in the Andes of Bolivia

from Part VII - Cloud forest conservation, restoration, and management issues

Published online by Cambridge University Press:  03 May 2011

T. Krömer
Affiliation:
Universidad Veracruzana, México
S. R. Gradstein
Affiliation:
University of Göttingen, Germany
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Species richness of vascular epiphytes in mature sub-montane and montane forests is compared that in adjacent 15-year old fallow forests at two sites in the Andes of Bolivia. These forests rank among the richest worldwide in terms of epiphyte diversity. Approximately 500 species (25 families, 110 genera) were recorded in total, whereas 0.33 ha of moist montane forest had up to 175 species. Fallows had 60–70% fewer epiphyte species than did mature forest, but species reductions varied considerably among different groups of epiphytes. Species richness of orchids, bromeliads, and grammitid and filmy ferns was much lower in fallows than in mature forest but was not reduced for hemi-epiphytic aroids, nor for polypodioid and asplenioid ferns. The reduced epiphyte diversity in fallows is explained by structural characteristics of the fallow trees, including the lack of dense epiphytic moss mats, and by the drier micro-climate in the fallows.

INTRODUCTION

Vascular epiphytes, including orchids, aroids, bromeliads, and ferns, are important components of moist tropical montane forests, both in terms of species richness (Gentry and Dodson, 1987; Benzing, 1990; Nieder et al., 1999; Krömer et al., 2005; Liede-Schumann and Breckle, 2008; Catchpole and Kirkpatrick, this volume), and their role in rainfall and cloud water interception and release (Hölscher et al., 2004; Köhler et al., 2007; Köhler et al., this volume; Tobón et al., this volume #26) and nutrient cycling (Nadkarni, 1984; Coxson and Nadkarni, 1995; cf. Chang et al., this volume; Oesker et al., this volume).

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 605 - 609
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acebey, A., and Krömer, T. (2001). Diversidad y distribución vertical de epífitas en los alrededores del campamento río Eslabón y de la laguna Chalalán, Parque Nacional Madidi, Dpto. La Paz, Bolivia. Revista de la Sociedad Boliviana de Botánica 3: 104–123.Google Scholar
Acebey, A., Gradstein, S. R., and Krömer, T. (2003). Species richness and habitat diversification of bryophytes in submontane rain forest and fallows of Bolivia. Journal of Tropical Ecology 19: 9–18.CrossRefGoogle Scholar
Aide, T. M., and Grau, H. R. (2004). Globalization, migration, and Latin American ecosystems. Science 305: 1915–1916.CrossRefGoogle ScholarPubMed
Barthlott, W., Schmit-Neuerburg, V., Nieder, J., and Engwald, S. (2001). Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology 152: 145–156.CrossRefGoogle Scholar
Benzing, D. H. (1990). Vascular Epiphytes: General Biology and Related Biota. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Benzing, D. H. (1995). The physical mosaic and plant variety in forest canopies. Selbyana 16: 159–168.Google Scholar
Cardelús, C. L., Colwell, R. K., and Watkins, J. E. (2006). Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology 94: 144–156.CrossRefGoogle Scholar
Coxson, D., and Nadkarni, N. M. (1995). Ecological roles of epiphytes in nutrient cycles of forest ecosystems. In Forest Canopies, eds. Lowman, M. and Nadkarni, N. M., pp. 495–546. San Diego, CA: Academic Press.Google Scholar
Dunn, R. R. (2000). Bromeliad communities in isolated trees and three successional stages of an Andean cloud forest in Ecuador. Selbyana 21: 137–143.Google Scholar
Elbers, J. (1995). Estudio de suelos en la zona de colonización Alto Beni, La Paz, Bolivia. Ecología en Bolivia 25: 37–69.Google Scholar
Engwald, S. (1999). Diversität und Ökologie der vaskulären Epiphyten eines Berg- und eines Tieflandregenwaldes in Venezuela. Hamburg, Germany: Books on Demand.Google Scholar
Gentry, A. H., and Dodson, C. H. (1987). Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74: 205–233.CrossRefGoogle Scholar
Gradstein, S. R. (1992). The vanishing tropical rain forest as an environment for bryophytes and lichens. In Bryophytes and Lichens in a Changing Environment, eds. Bates, J. W. and Farmer, A. W., pp. 234–258. Oxford, UK: Clarendon Press.Google Scholar
Gradstein, S. R., Nadkarni, N. M., Krömer, T., Holz, I., and Nöske, N.. (2003) A protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity in tropical rain forests. Selbyana 24: 105–111.Google Scholar
Hamilton, L. S., Juvik, J. O., and Scatena, F. N. (eds.) (1995). Tropical Montane Cloud Forests. New York: Springer-Verlag.CrossRefGoogle Scholar
Hietz-Seifert, U., Hietz, P., and Guevara, S. (1996). Epiphyte vegetation and diversity on remnant trees after forest clearance in southern Veracruz, Mexico. Biology and Conservation 75: 103–111.CrossRefGoogle Scholar
Hölscher, D., Köhler, L., Dijk, A. I. J. M., and Bruijnzeel, L. A. (2004). The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica. Journal of Hydrology 292: 308–322.CrossRefGoogle Scholar
Holz, I., and Gradstein, S. R. (2005). Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica: species richness, community composition and ecology. Plant Ecology 178: 89–109.CrossRefGoogle Scholar
Ibisch, P. L. (1996). Neotropische Epiphytendiversität: Das Beispiel Bolivien. Wiehl, Germany: Martina Galunder-Verlag.Google Scholar
Jokisch, B. D, and Lair, B. M. (2002). One last stand? Montane forests and change on Ecuador's Eastern Cardillera. Geographical Review 92: 235–256.CrossRefGoogle Scholar
Jørgensen, P. M., and León-Yánez, S. (1999). Catalogue of the Vascular Plants of Ecuador. St. Louis, MO: Missouri Botanical Garden Press.Google Scholar
Kelly, D. L., Tanner, E. V. J., Niclughadha, E. M., and Kapos, V. (1994). Floristics and biogeography of a rain forest in the Venezuelan Andes. Journal of Biogeography 21: 223–241.CrossRefGoogle Scholar
Köhler, L., Tobón, C., Frumau, K. F. A., and Bruijnzeel, L. A. (2007). Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica. Plant Ecology, doi:10.1007/511258–006–9256–7.CrossRef
Krömer, T. (2003). Diversität und Ökologie der vaskulären Epiphyten in primären und sekundären Bergwäldern Boliviens. Göttingen, Germany: Cuvillier-Verlag.Google Scholar
Krömer, T., and Gradstein, S. R. (2003). Species richness of vascular epiphytes in two primary forests and fallows in the Bolivian Andes. Selbyana 24: 190–195.Google Scholar
Krömer, T., Kessler, M., Gradstein, S. R., and Acebey, A. (2005). Diversity patterns of vascular epiphytes along an elevational gradient in the Andes. Journal of Biogeography 32: 1799–1809.CrossRefGoogle Scholar
Krömer, T., Kessler, M., and Gradstein, S. R. (2007). Vertical stratification of vascular epiphytes in submontane and montane forest of the Bolivian Andes: the importance of the understory. Plant Ecology 189: 261–278.CrossRefGoogle Scholar
Küper, W., Kreft, H., Nieder, J., Köster, N., and Barthlott, W. (2004). Large-scale diversity patterns of vascular epiphytes in Neotropical montane rain forests. Journal of Biogeography 31: 1477–1487.CrossRefGoogle Scholar
Liede-Schumann, S., and Breckle, S. (eds.) (2008). Provisional Checklists of Flora and Fauna of the San Francisco Valley and its Surroundings, Southern Ecuador. Bonn, Germany: Society of Tropical Ecology.Google Scholar
Nadkarni, N. M. (1984). Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16: 249–256.CrossRefGoogle Scholar
Nieder, J., Engwald, S., and Barthlott, W. (1999). Patterns of neotropical epiphyte diversity. Selbyana 20: 66–75.Google Scholar
Nöske, N. (2005). Effekte anthropogener Störung auf die Diversität kryptogamischer Epiphyten (Flechten, Moose) in einem Bergregenwald in Süd Ecuador. Ph.D. thesis, University of Göttingen, Göttingen, Germany.Google Scholar
Nöske, N., Hilt, N., Werner, F., et al. (2008). Disturbance effects on diversity in montane forest of Ecuador: sessile epiphytes versus mobile moths. Basic and Applied Ecology 9: 4–12.CrossRefGoogle Scholar
Pérez-Peña, A., and Krömer, T. (2009). ¿Qué pueden aportar los acahuales y las plantaciones de cítricos a la conservación de las epífitas vasculares en Los Tuxtlas, Veracruz? In Avances y perspectivas en la investigación de bosques tropicales y sus alrededores: Los Tuxtlas, eds. Reynoso-Rosales, V. H. and Coates, R.. México, DF: UNAM.Google Scholar
Perry, D. R. (1978). A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155–157.CrossRefGoogle Scholar
Pócs, T. (1980). The epiphytic biomass and its effect on the water balance of two rain forest types in the Uluguru Mountains (Tanzania, East Africa). Acta Botanica Academiae Scientiarum Hungaricae 26: 143–167.Google Scholar
Steege, H., and Cornelissen, J. H. C. (1989). Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana. Biotropica 21: 331–339.CrossRefGoogle Scholar
Turner, I. M., Tan, H. T. W., Wee, Y. C., et al. (1994). A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity. Conservation Biology 8: 705–712.CrossRefGoogle Scholar
Werff, H., and Consiglio, T. (2004). Distribution and conservation significance of endemic species of flowering plants in Peru. Biodiversity and Conservation 13: 1699–1713.CrossRefGoogle Scholar
Ek, R. C., Steege, H., and Biesmeijer, K. C. (1997). Vertical distribution and associations of vascular epiphytes in four different forest types in the Guianas. In Botanical Diversity in the Tropical Rain Forest of Guyana, ed. Ek, R. C., pp. 65–89. Wageningen, the Netherlands: Tropenbos Foundation.Google Scholar
Werner, F., and Gradstein, S. R. (2009). Diversity of dry forest epiphytes across a gradient of human disturbance in the tropical Andes. Journal of Vegetation Science 20: 59–68.CrossRefGoogle Scholar
Werner, F., Homeier, J., and Gradstein, S. R. (2005). Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 11: 21–40.Google Scholar
Wolf, J. H. D. (2005). The response of epiphytes to anthropogenic disturbance of pine–oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212: 376–393.CrossRefGoogle Scholar
Wolf, J. H. D., and Flamenco-Sandoval, A. (2006). Vascular epiphytes and their potential as a tool in pine–oak forests of Chiapas, Mexico. In Ecology and Conservation of Neotropical Montane Oak Forests, ed. Kappelle, M., pp. 375–391. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Wolf, J. H. D., Gradstein, S. R., and Nadkarni, N. M. (2009). A protocol for sampling vascular epiphyte richness and abundance. Journal of Tropical Ecology 25: 107–121.CrossRefGoogle Scholar
Zotz, G., and Vollrath, B. (2003). The epiphyte vegetation of the palm Socratea exorrhiza: correlations with tree size, tree age, and bryophyte cover. Journal of Tropical Ecology 19: 81–90.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×