Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T06:22:41.251Z Has data issue: false hasContentIssue false

66 - Ecological and social bases for the restoration of a High Andean cloud forest: preliminary results and lessons from a case study in northern Ecuador

from Part VII - Cloud forest conservation, restoration, and management issues

Published online by Cambridge University Press:  03 May 2011

S. Báez
Affiliation:
Ecopar, Quito, Ecuador
K. Ambrose
Affiliation:
Ecopar, Quito, Ecuador
R. Hofstede
Affiliation:
Ecopar and IUCN Sur, Quito, Ecuador
L. A. Bruijnzeel
Affiliation:
Vrije Universiteit, Amsterdam
F. N. Scatena
Affiliation:
University of Pennsylvania
L. S. Hamilton
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The High Andean cloud forests of northern Ecuador have been exploited by humans for centuries. Presently, ecological restoration is urgently needed to enhance biodiversity conservation, and ecosystem processes and services. This chapter presents the basis for a strategy that integrates ecological knowledge and local people's perspectives on the utilization of biodiversity for the restoration and management of a High Andean landscape. The objectives were: (i) to evaluate the restoration needs of the landscape, (ii) to identify groups within society that are interested in forest restoration, (iii) to select the species of plants with potential for forest restoration, and species of mammals for managed production, and (iv) to provide recommendations for integrating groups within society to achieve participative restoration. It was found that: (i) upper montane cloud forests (2900–3400 m.a.s.l.) are most in need of restoration, (ii) more affluent groups within the society are more willing to use biodiversity, with gender and ethno-biological knowledge influencing these trends, and (iii) seven species of plants and five species of mammals have the highest potential for restoration and management. Thus, an initial phase for a restoration project should encourage and guide the more affluent parts of society to restore their lands first. Less affluent people are likely to become interested in restoration once they can explore concrete examples of the uses they can make of local biodiversity, and if support for these activities is available through participatory learning. […]

Type
Chapter
Information
Tropical Montane Cloud Forests
Science for Conservation and Management
, pp. 628 - 643
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, P. (2002). The Geography of Poverty in Ecuador. Berkeley, CA: University of California, Department of Agricultural, Environmental and Development Economics.Google Scholar
Armitage, D. R. (2003). Traditional agroecological knowledge, adaptative management and the socio-politics of conservation in Central Sulawesi, Indonesia. Environmental Conservation 30: 79–90.CrossRefGoogle Scholar
Armitage, D. R. (2005). Adaptative capacity and community-based natural resource management. Environmental Management 35: 703–715.CrossRefGoogle Scholar
Balslev, H., and Ølgaard, B. (2002). Mapa de vegetación del sur de Ecuador. In Botánica Austroecuatoriana: Estudios sobre los recursos vegetales en las Provincias de El Oro, Loja y Zamora-Chinchipe, eds. Aguirre, M. Z., Madsen, J. E., Cotton, E., and Balslev, H., pp. 51–64. Quito, Ecuador: Abya-Yala.Google Scholar
Barthlott, W., Muthke, J., Rafiqpoor, M. D., Kier, G., and Kreft, H. (2005). Global centres of vascular plant diversity. Nova Acta Leopoldina N.F. 92, 342: 61–83.Google Scholar
Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R. (eds.) (2007). Gradients in a Tropical Mountain Ecosystem of Ecuador. Berlin: Springer-Verlag.Google Scholar
Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees?Agriculture, Ecosystems and Environment 104: 185–228.CrossRefGoogle Scholar
Buytaert, W., Célleri, R., Bièvre, B., et al. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews 79: 53–72.CrossRefGoogle Scholar
Byg, A., and Balslev, H. (2001). Diversity and use of palms in Zahamena, eastern Madagascar. Biodiversity and Conservation 10: 951–970.CrossRefGoogle Scholar
Conway, S., and Steward, F. (1998). Mapping innovation networks. International Journal of Innovation Management 2: 223–254.CrossRefGoogle Scholar
Cook, W. M., Casagrande, D. G., Hope, D., Groffman, P. M., and Collins, S. L. (2004). Learning to roll with the punches: adaptive experimentation in human dominated systems. Frontiers in Ecology and the Environment 2: 467–474.CrossRefGoogle Scholar
Crissman, C. C., Espinosa, P., Ducrot, C. E. F., Cole, D. C., and Carpio, F. (1998). The case study site: physical, health and potato farming systems in Carchi province – economic, environmental and health tradeoffs. In Agriculture: Pesticides and the Sustainability of Andean Potato Production, eds. Crissman, C. C., Antle, M. J. and Capalbo, S. M., pp. 85–120. Dordrecht, the Netherlands: Kluwer.Google Scholar
Dinerstein, E., Olson, D. M., Graham, D. J., et al. (1995). A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean. Washington, DC: World Wildlife Fund and World Bank.CrossRefGoogle Scholar
Engel, P. (1997). The Social Organization of Innovation: A Focus on Stakeholder Interactions. Amsterdam, the Netherlands: Royal Tropical Institute.Google Scholar
,FAO (1999). The Participatory Process for Supporting Collaborative Management of Natural Resources: An Overview. Rome: FAO.
Fehse, J., Aguirre, N., Paladines, C., et al. (1998). Caracterización de los bosques naturales de la sierra del Ecuador, Programa FACE de Forestación (PROFAFOR). Quito, Ecuador: Abya-Yala.Google Scholar
Frolich, L. M., and Guevara, E. (1999). The role of family-based agricultural innovation in conserving tropical montane cloud forest: The Guandera Project in Northern Ecuador. In Entendiendo las interfaces ecológicas para la gestión de paisajes culturales en los Andes: Memorias del tercer simposio internacional sobre desarrollo sustentable en los Andes, eds. Sarmiento, F. and Hidalgo, J., pp. 45–49. Quito, Ecuador: Corporación Editora Nacional.Google Scholar
Gasgrain, P., and Legendre, P. (2000). The R Package for Multivariate and Spatial Analysis. Montréal, Canada: University of Montréal, Dèpartment of Biological Sciences.Google Scholar
Grubb, P. J. (1977). Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8: 83–107.CrossRefGoogle Scholar
Günter, S., P.Gonzalez, G. Alvarez, et al. (2009). Determinants of successful regeneration of abandoned pastures in the Andes: soil conditions and vegetation cover. Forest Ecology and Management 258: 81–91.CrossRefGoogle Scholar
Hobbs, R. J., and Harris, J. A. (2001). Restoration ecology: repairing the Earth's ecosystems in the new millennium. Restoration Ecology 9: 239–246.CrossRefGoogle Scholar
Hofstede, R., Lips, J., Jongsma, W., and Sevink, J.. (1998). Geografía, ecología y forestación en la Sierra Alta del Ecuador: Revisión de literatura. Quito, Ecuador: Abya-Yala.Google Scholar
Jordan, W. R. III, Gilpin, M. E., and Aber, D. (1987). Restoration Ecology: A Synthetic Approach to Ecological Research. Cambridge, UK: Cambridge University Press.Google Scholar
Kessler, M. (1995). Present and potential distribution of Polylepis (Rosaceae) forests in Bolivia. In Biodiversity and Conservation of Neotropical Montane Forests, eds. Churchill, S. P., Balslev, H, Forero, E., and Luteyn, J., pp. 281–294. New York: New York Botanical Garden.Google Scholar
Laegaard, S. (1992). Influence of fire in the paramo vegetation of Ecuador. In Paramo: An Andean Ecosystem under Human Influence, eds. Balslev, H. and Luteyn, J., pp. 151–170. London: Academic Press.Google Scholar
Leeuwis, C., and Rhiannon, P. (2002). Wheelbarrows Full of Frogs: Social Learning in Rural Resource Management. Amsterdam, the Netherlands: Koninklijke Uitgeverij van Gorcum.Google Scholar
Loján, L. (2003). El verdor de los Andes Ecuatorianos: Realidades y promesas. Quito, Ecuador: FAO.Google Scholar
Malmer, A., Murdiyarso, D., Bruijnzeel, L. A., and Ilstedt, U. (2009). Carbon sequestration in tropical forests and water: a critical look at the basis for commonly used generalisations. Global Change Biology, doi:10.1111/j.1365–2486.2009.01984.x.CrossRef
Medeiros Costa-Neto, E. (1999). Traditional use and sale of animals as medicines in Feira de Santana City, Bahia, Brazil. Indigenous Knowledge and Development Monitor. Available at www.luchy.ukc-ac.
Medellín, R., Manterola, C., Valdéz, M., et al. (2005). History, ecology, and conservation of the Pronghorn Antelope, Bighorn Sheep, and Black Bear in Mexico. In Biodiversity, Ecosystems, and Conservation in Northern Mexico, eds. Cartron, J. L. E., Ceballos, G., and Stephen, R., pp. 387–404. Oxford, UK: Oxford University Press.Google Scholar
Molina, A., Govers, G., Vanacker, V., Poesen, J., and Zeelmaekers, E. (2007). Runoff generation in a degraded Andean ecosystem: interaction of vegetation cover and land use. Catena 71: 357–370.CrossRefGoogle Scholar
Mora, L. (1996). Vegetacion de la Reserva Guandera. Graduate thesis, Facultad de Filosofia, Universidad Central del Ecuador, Quito, Ecuador.Google Scholar
Mosandl, R., Günter, S., Stimm, B., and Weber, M. (2008). Ecuador suffers the highest deforestation rate in South America. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 37–40. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Muñoz-Piña, C., Guevara, A., Torres, J. M., and Braña, J. (2008). Paying for the hydrological services of Mexico's forests: analysis, negotiations and results. Ecological Economics 65: 725–736.CrossRefGoogle Scholar
Orejuela, J. E. (1992). Traditional productive systems of the Awa (Cuaiquer) Indians of Southwestern Colombia and neighboring Ecuador. In Conservation of Neotropical Forests: Working from Traditional Resource Use, eds. Redford, K. H. and Padoch, C., pp. 379–399. New York: Columbia University Press.Google Scholar
Phillips, O., and Gentry, A. H. (1993). The useful plants of Tambopata, Peru: statistical hypothesis test with a new quantitative technique. Economic Botany 47: 15–32.CrossRefGoogle Scholar
Phillips, O., Gentry, A. H., Wilking, P., and Gálvez-Durand, D. B. (1994). Quantitative ethno botany and Amazonian conservation. Conservation Biology 8: 225–248.CrossRefGoogle Scholar
Pitman, N. C. A., Jørgensen, P. M., Williams, S. R., León-Yánez, S., and Valencia, R. (2002). Extinction-rate estimates for a modern Neotropical flora. Conservation Biology 16: 1427–1431.CrossRefGoogle Scholar
Pohle, P., and Gerique, A. (2008). Sustainable and non-sustainable use of natural resources by indigenous and local communities. In Gradients in a Tropical Mountain Ecosystem of Ecuador, eds. Beck, E., Bendix, J., Kottke, I., Makeschin, F., and Mosandl, R., pp. 347–361. Berlin: Springer-Verlag.Google Scholar
Sarmiento, F. (2002). Anthropogenic change in the landscapes of highland Ecuador. Geographical Review 92: 213–234.CrossRefGoogle Scholar
Scott, D. F., Bruijnzeel, L. A., and Mackensen, J. (2005). The hydrological and soil impacts of forestation in the tropics. In Forests, Water and People in the Humid Tropics, eds. Bonell, M. and Bruijnzeel, L. A., pp. 622–651. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Sierra, R., Cerón, C., Palacios, W., and Valencia, R. (1999). Mapa de vegetación del Ecuador continental. Quito, Ecuador: EcoCiencia, INEFAN/GEF.Google Scholar
Stearman, A. (1992). Neotropical indigenous hunters and their neighbors: Siriono, Chimane, and Yuquí hunting on the Bolivian frontier. In Conservation of Neotropical Forests: Working from Traditional Resource Use, eds. Redford, K. H. and Padoch, C., pp. 108–130. New York: Columbia University Press.Google Scholar
Tirira, D. (1999). Mamíferos del Ecuador. Quito, Ecuador: Pontificia Universidad Católica del Ecuador and SIMBIOE.Google Scholar
Geloof, I. (2003). Natural regeneration of tropical cloud forest trees around the treeline ecotone in the Guandera Biological Reserve, Ecuador. M.Sc. thesis, Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.Google Scholar
Wille, M., Hofstede, R., Fehse, J., Hooghiemstra, H., and Sevink, J. (2002). Upper forest line reconstruction in a deforested area in northern Ecuador based on pollen and vegetation analysis. Journal of Tropical Ecology 18: 409–440.CrossRefGoogle Scholar
Yaguache, R., and Carrion, R. (2004). Construyendo una experiencia de desarrollo: El manejo de recursos naturales en Pimampiro. Quito, Ecuador: CEDERENA.Google Scholar
Yanggen, D., Cole, D., Crissman, C., and Sherwood, S. (2004). Pesticide use in commercial potato production: reflections on research and intervention efforts towards greater ecosystems health in Northern Ecuador. EcoHealth, doi:10.1007/s10393–004–0056-z.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×