Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T02:00:02.850Z Has data issue: false hasContentIssue false

3 - Top-down and bottom-up interactions in freshwater ecosystems: emerging complexities

from Part II - Ecosystems

Published online by Cambridge University Press:  05 May 2015

Jason M. Taylo
Affiliation:
United States Department of Agriculture
Michael J. Vanni
Affiliation:
University of Oxford
Alexander S. Flecker
Affiliation:
Cornell University
Torrance C. Hanley
Affiliation:
Northeastern University, Boston
Kimberly J. La Pierre
Affiliation:
University of California, Berkeley
Get access

Summary

Introduction

Lindeman (1942) made early distinctions between aquatic food webs and Elton's (1927) terrestrial biomass pyramids that firmly established the study of lakes and rivers as fertile ecosystems for examining the relative roles of resources and consumers in controlling energy flow and biomass. Building on these early observations, ecologists have established that energy transfers more efficiently through freshwater food webs than terrestrial food webs as a result of higher consumer-producer size ratios, higher producer growth rates and population turnover, and lower consumer-resource elemental imbalances, as compared to terrestrial systems (Shurin et al., 2006). Freshwater ecologists have confirmed the importance of nutrients in limiting primary production and the rapid transfer of energy to herbivores, thereby establishing the important role of bottom-up processes in regulating freshwater food webs (McQueen et al., 1986; Power, 1992). Freshwater ecologists have also recognized the role of top-down processes in freshwater ecosystems, and contributed substantially to demonstrating that higher trophic levels can influence primary producer biomass through trophic cascades (Carpenter et al., 1985; Power, 1992; Pace et al., 1999).

Clearly, both “top-down” (TD) and “bottom-up” (BU) regulation are pervasive in freshwater food webs (Shurin et al., 2006; Gruner et al., 2008), and these two processes do not act independently. For example, increasing nutrients can intensify consumer control and the effects of trophic cascades on producer communities (Carpenter et al., 2001; Jeppesen et al., 2003), and increase overall contribution of animal-mediated nutrient recycling to ecosystem demand (Vanni et al., 2006; Wilson and Xenopoulos, 2011). Understanding mechanisms that facilitate interactions between resource and consumer control of food web structure is an important avenue of research. Moreover, the importance of BU and TD interactions also pervades applied aspects of ecology, including water quality management and biodiversity conservation. For example, BU and TD interactions are beginning to help conservationists predict consequences of changing species composition on ecosystem function (Eby et al., 2006; McIntyre et al., 2007; Vaughn, 2010).

Type
Chapter
Information
Trophic Ecology
Bottom-up and Top-down Interactions across Aquatic and Terrestrial Systems
, pp. 55 - 85
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allan, J. D., Abell, R., Hogan, Z., et al. (2005). Overfishing of inland waters. Bioscience, 55, 1041–1051.CrossRefGoogle Scholar
Allen, A. P. and Gillooly, J. F. (2009). Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecology Letters, 12, 369–384.CrossRefGoogle ScholarPubMed
Allen, D. C. and Vaughn, C. C. (2011). Density-dependent biodiversity effects on physical habitat modification by freshwater bivalves. Ecology, 92, 1013–1019.CrossRefGoogle ScholarPubMed
Arango, C. P., Riley, L. A., Tank, J. L. and Hall, R. O. Jr. (2009). Herbivory by an invasive snail increases nitrogen fixation in a nitrogen-limited stream. Canadian Journal of Fisheries and Aquatic Sciences, 66, 1309–1317.CrossRefGoogle Scholar
Atkinson, C. L., Vaughn, C. C., Forshay, K. J. and Cooper, J. T. (2013). Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics. Ecology, 94, 1359–1369.CrossRefGoogle ScholarPubMed
Bartell, S. M. (1981). Potential impact of size-selective planktivory on phosphorus release by zooplankton. Hydrobiologia, 80, 139–145.CrossRefGoogle Scholar
Baxter, C. V., Fausch, K. D., Murakami, M. and Chapman, P. L. (2004). Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology, 85, 2656–2663.CrossRefGoogle Scholar
Bayley, P. B. (1995). Understanding large river floodplain ecosystems. Bioscience, 45, 153–158.CrossRefGoogle Scholar
Benjamin, J. R., Fausch, K. D. and Baxter, C. V. (2011). Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders. Oecologia, 167, 503–512.CrossRefGoogle ScholarPubMed
Benstead, J. P., Cross, W. F., March, J. G., et al. (2010). Biotic and abiotic controls on the ecosystem significance of consumer excretion in two contrasting tropical streams. Freshwater Biology, 55, 2047–2061.CrossRefGoogle Scholar
Boersma, M., Aberle, N., Hantzsche, F. M., et al. (2008). Nutritional limitation travels up the food chain. International Review of Hydrobiology, 93, 479–488.CrossRefGoogle Scholar
Borer, E. T., Halpern, B. S. and Seabloom, E. W. (2006). Asymmetry in community regulation: effects of predators and productivity. Ecology, 87, 2813–2820.CrossRefGoogle ScholarPubMed
Brett, M. T. and Goldman, C. R. (1996). A meta-analysis of the freshwater tropic cascade. Proceedings of the National Academy of Sciences of the USA, 93, 7723–7726.CrossRefGoogle Scholar
Brett, M. T. and Goldman, C. R. (1997). Consumer versus resource control in freshwater pelagic food webs. Science, 275, 384–386.CrossRefGoogle ScholarPubMed
Brett, M. T., Muller-Navarra, D. C. and Park, S.-K. (2000). Empirical analysis of the effect of phosphorus limitation on algal food quality for freshwater zooplankton. Limnology and Oceanography, 45, 1564–1575.CrossRefGoogle Scholar
Capps, K. A. and Flecker, A. S. (2013). Invasive aquarium fish transform ecosystem nutrient dynamics. Proceedings of the Royal Society B, 280, 20131520.CrossRefGoogle ScholarPubMed
Carlsson, N. O. L., Brönmark, C. and Hansson, L.-A. (2004). Invading herbivory: the golden apple snail alters ecosystem functioning in Asian wetlands. Ecology, 85, 1575–1580.CrossRefGoogle Scholar
Carpenter, S. R., Kitchell, J. F. and Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. Bioscience, 35, 634–639.CrossRefGoogle Scholar
Carpenter, S. R., Caraco, N. F., Correl, D. L., et al. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8, 559–568.CrossRefGoogle Scholar
Carpenter, S. R., Cole, J. J., Hodgson, J. R., et al. (2001). Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs, 71, 163–186.CrossRefGoogle Scholar
Carpenter, S. R., Cole, J. J., Pace, M. L., et al. (2005). Ecosystem subsidies: terrestrial support of aquatic food webs from 13C addition to contrasting lakes. Ecology, 86, 2737–2750.CrossRefGoogle Scholar
Carpenter, S. R., Cole, J. J., Kitchell, J. F. and Pace, M. L. (2010). Trophic cascades in lakes: lessons and prospects. In Trophic Cascades: Predators, Prey, and Changing Dynamics of Nature, ed. Terborgh, J. and Estes, J. A.. Washington, DC: Island Press, pp. 55–69.Google Scholar
Catalano, M. J. and Allen, M. S. (2010). A whole-lake density reduction to assess compensatory responses of gizzard shad Dorosoma cepedianum. Canadian Journal of Fisheries and Aquatic Sciences, 68, 955–968.Google Scholar
Catalano, M. J., Allen, M. S., Schaus, M. H., Buck, D. G. and Beaver, J. R. (2010). Evaluating short-term effects of omnivorous fish removal on water quality and zooplankton at a subtropical lake. Hydrobiologia, 655, 159–169.CrossRefGoogle Scholar
Cebrian, J. (1999). Patterns in the fate of production in plant communities. American Naturalist, 154, 449–468.CrossRefGoogle ScholarPubMed
Cebrian, J. and Lartigue, J. (2004). Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecological Monographs, 74, 237–259.CrossRefGoogle Scholar
Conley, D. J., Paerl, H. W., Howarth, R. W., et al. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–1015.CrossRefGoogle ScholarPubMed
Creed, R. P. Jr. and Reed, J. M. (2004). Ecosystem engineering by crayfish in a headwater stream community. Journal of the North American Benthological Society, 23, 224–236.2.0.CO;2>CrossRefGoogle Scholar
Cross, W. F., Wallace, J. B., Rosemond, A. D. and Eggert, S. L. (2006). Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology, 87, 1556–1565.CrossRefGoogle Scholar
Danger, M., Funck, J. A., Devin, S., Heberle, J. and Felten, V. (2013). Phosphorus content in detritus controls life-history traits of a detritivore. Functional Ecology, 27, 807–815.CrossRefGoogle Scholar
Dickman, E. M., Vanni, M. J. and Horgan, M. J. (2006). Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia, 149, 676–689.CrossRefGoogle ScholarPubMed
Dickman, E. M., Newell, J. M., González, M. J. and Vanni, M. J. (2008). Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Sciences of the USA, 105, 18408–18412.CrossRefGoogle ScholarPubMed
Dillon, P. J. and Rigler, F. H. (1976). The phosphorus-chlorophyll relationship in lakes. Limnology and Oceanography, 19, 767–773.Google Scholar
Dodds, W. K., Smith, V. H. and Lohman, K. (2002). Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries and Aquatic Sciences, 59, 865–874.CrossRefGoogle Scholar
Domis, L. N. D., Elser, J. J., Gsell, A. S., et al. (2013). Plankton dynamics under different climatic conditions in space and time. Freshwater Biology, 58, 463–482.Google Scholar
Downing, J. A., Plante, C. and Lalonde, S. (1990). Fish production correlated with primary productivity, not the morphoedaphic index. Canadian Journal of Fisheries and Aquatic Sciences, 47, 1929–1936.CrossRefGoogle Scholar
Downing, J. A., Watson, S. B. and McCauley, E. (2001). Predicting Cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 58, 1905–1908.CrossRefGoogle Scholar
Dugdale, R. C. and Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography, 12, 196–206.CrossRefGoogle Scholar
Eby, L. A., Roach, W. J., Crowder, L. B. and Stanford, J. A. (2006). Effects of stocking-up freshwater food webs. Trends in Ecology and Evolution, 21, 576–584.CrossRefGoogle ScholarPubMed
Elser, J. J. and Urabe, J. (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80, 735–751.CrossRefGoogle Scholar
Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al. (2007). Global analysis of nitrogen and phosphorus limitiation of primary producers in freshwater, marine, and terrestrial ecosystems. Ecology Letters, 10, 1135–1142.CrossRefGoogle Scholar
Elton, C. (1927). Animal Ecology. London, UK: Sidgwick and Jackson.Google Scholar
Epanchin, P., Knapp, R. and Lawler, S. (2010). Nonnative trout impact an alpine-nesting bird by altering aquatic insect subsidies. Ecology, 91, 2406–2415.CrossRefGoogle ScholarPubMed
Finlay, J. C. and Vredenburg, V. T. (2007). Introduced trout sever trophic connections in watersheds: consequences for a declining amphibian. Ecology, 88, 2187–2197.CrossRefGoogle ScholarPubMed
Fittkau, E. J. (1970). Role of caimans in the nutrient regime of mouthlakes of Amazon affluents (a hypothesis). Biotropica, 2, 138–142.CrossRefGoogle Scholar
Flecker, A. S. (1996). Ecosystem engineering by a dominant detritivore in a diverse tropical stream. Ecology, 77, 1845–1854.CrossRefGoogle Scholar
Flecker, A. S. and Taylor, B. W. (2004). Tropical fishes as biological bulldozers: density effects on spatial heterogeneity and species diversity. Ecology, 85, 2267–2278.CrossRefGoogle Scholar
Flecker, A. S. and Townsend, C. R. (1994). Community-wide consequences of trout introduction in New Zealand streams. Ecological Applications, 4, 798–807.CrossRefGoogle Scholar
Flecker, A. S., Feifarek, B. P. and Taylor, B. W. (1999). Ecosystem engineering by a tropical tadpole: density-dependent effects on habitat structure and larval growth rates. Copeia, 1999, 495–500.CrossRefGoogle Scholar
Flecker, A. S., Taylor, B. W., Bernhardt, E. S., et al. (2002). Interactions between herbivorous fishes and limiting nutrients in a tropical stream ecosystem. Ecology, 83, 1831–1844.CrossRefGoogle Scholar
Flecker, A. S., McIntyre, P. B., Moore, J. W., et al. (2010). Migratory fishes as material and process subsidies in riverine ecosystems. In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques, ed. Gido, K. B. and Jackson, D. A.. Bethesda, MD: American Fisheries Society, Symposium 73, pp. 559–592.Google Scholar
Forrester, G. E., Dudley, T. L. and Grimm, N. B. (1999). Trophic interactions in open systems: effects of predators and nutrients on stream food chains. Limnology and Oceanography, 44, 1187–1197.CrossRefGoogle Scholar
Francoeur, S. N. (2001). Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. Journal of the North American Benthological Society, 20, 358–368.CrossRefGoogle Scholar
Frost, P. C. and Elser, J. J. (2002). Growth responses of littoral mayflies to the phosphorus content of their food. Ecology Letters, 5, 232–240.CrossRefGoogle Scholar
Gelwick, F. P. and Matthews, W. J. (1992). Effects of an algivorous minnow on temperate stream ecosystem properties. Ecology, 73, 1630–1645.CrossRefGoogle Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. and Charnov, E. L. (2001). Effects of size and temperature on metabolic rate. Science, 293, 2248–2251.CrossRefGoogle ScholarPubMed
Glass, J. B., Axler, R. P., Chandra, S. and Goldman, C. R. (2012). Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures. Frontiers in Microbiology, 3, 331.CrossRefGoogle ScholarPubMed
Gottesfeld, A. S., Hassan, M. A., Tunnicliffe, J. F. and Poirier, R. W. (2004). Sediment dispersion in salmon spawning streams: the influence of floods and salmon redd construction. Journal of American Water Resources Association, 40, 1071–1086.CrossRefGoogle Scholar
Grimm, N. B. (1988a). Feeding dynamics, nitrogen budgets, and ecosystem role of a desert stream omnivore, Agosia chrysogaster (Pisces, Cyprinidae). Environmental Biology of Fishes, 21, 143–152.CrossRefGoogle Scholar
Grimm, N. B. (1988b). Role of macroinvertebrates in nitrogen dynamics of a desert stream. Ecology, 69, 1884–1893.CrossRefGoogle Scholar
Gruner, D. S., Smith, J. E., Seabloom, E. W., et al. (2008). A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecology Letters, 11, 740–755.CrossRefGoogle ScholarPubMed
Gulis, V. and Suberkropp, K. (2003). Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology, 48, 123–134.CrossRefGoogle Scholar
Gulis, V., Rosemond, A. D., Suberkropp, K., Weyers, H. S. and Benstead, J. P. (2004). Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams. Freshwater Biology, 49, 1437–1447.CrossRefGoogle Scholar
Hairston, N. G., Smith, F. E. and Slobodkin, L. B. (1960). Community structure, population control, and competition. The American Naturalist, 94, 421–425.CrossRefGoogle Scholar
Hall, R. O. Jr., Tank, J. L. and Dybdahl, M. F. (2003). Exotic snails dominate nitrogen and carbon cycling in a highly productive stream. Frontiers in Ecology and Environment, 1, 407–411.CrossRefGoogle Scholar
Hall, R. O. Jr., Taylor, B. W. and Flecker, A. S. (2011). Detritivorous fish indirectly reduce insect secondary production in a tropical river. Ecosphere, 2, 135. DOI: 10.1890/ES11–00042.1CrossRefGoogle Scholar
Hall, S. R., Leibold, M. A., Lytle, D. A. and Smith, V. H. (2007). Grazers, producer stoichiometry, and the light: nutrient hypothesis revisited. Ecology, 88, 1142–1152.CrossRefGoogle ScholarPubMed
Hambright, K. D., Drenner, R. W., McComas, S. R. and Hairston, N. G. (1991). Gape-limited piscivores, planktivore size refuges, and the trophic cascade hypothesis. Archiv Fur Hydrobiologie, 121, 389–404.Google Scholar
Hambright, K. D., Zohary, T. and Gude, H. (2007). Microzooplankton dominate carbon flow and nutrient cycling in a warm subtropical freshwater lake. Limnology and Oceanography, 52, 1018–1025.CrossRefGoogle Scholar
Hansson, L.-A., Annadotter, H., Bergman, E., et al. (1998). Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosytems, 1, 558–574.CrossRefGoogle Scholar
Hargrave, C. W., Ramírez, R., Brooks, M., et al. (2006). Indirect food web interactions increase growth of an algivorous stream fish. Freshwater Biology, 51, 1901–1910.CrossRefGoogle Scholar
Hassan, M. A., Gottesfeld, A. S., Montgomery, D. R., et al. (2008). Salmon-driven bed load transport and bed morphology in mountain streams. Geophysical Research Letters, 35, L04405.CrossRefGoogle Scholar
Havens, K. E., James, R. T., East, T. L. and Smith, V. H. (2003). N : P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 122, 379–390.CrossRefGoogle Scholar
Hill, W. R., Smith, J. G. and Stewart, A. J.. (2010). Light, nutrients, and herbivore growth in oligotrophic streams. Ecology, 91, 518–2750.CrossRefGoogle ScholarPubMed
Hillebrand, H. (2002). Top-down versus bottom-up control of autotrophic biomass: a meta-analysis on experiments with periphyton. Journal of the North American Benthological Society, 21, 349–369.CrossRefGoogle Scholar
Hillebrand, H., de Montpellier, G. and Liess, A. (2004). Effects of macrograzers and light on periphyton stoichiometry. Oikos, 106(1), 93–104.CrossRefGoogle Scholar
Hood, J. M., Vanni, M. J. and Flecker, A. S. (2005). Nutrient recycling by two phosphorus-rich grazing catfish: the potential for phosphorus-limitation of fish growth. Oecologia, 146, 247–257.CrossRefGoogle ScholarPubMed
Hooper, D. U., Chapin, F. S., Ewel, J. J., et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 3–35.CrossRefGoogle Scholar
Horppila, J., Peltonen, H., Malinen, T., Luokkanen, E. and Kairesalo, T. (1998). Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecology, 6, 20–28.CrossRefGoogle Scholar
Huryn, A. D. (1998). Ecosystem-level evidence for top-down and bottom-up control of production in a grassland stream system. Oecologia, 115, 173–183.CrossRefGoogle Scholar
Hynes, H. B. N. (1975). The stream and its valley. Proceedings of the International Association of Theoretical and Applied Limnology, 19, 1–16.Google Scholar
Jeppesen, E., Jensen, J. P., Jensen, C., et al. (2003). The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the Arctic. Ecosystems, 6, 313–325.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J. P., Søndergaard, M. and Jauridsen, T. L. (2005). Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology, 50, 1616–1627.CrossRefGoogle Scholar
Jeppesen, E., Meerhoff, M., Jacobsen, B. A., et al. (2007). Restoration of shallow lakes by nutrient control and biomanipulation: the successful strategy varies with lake size and climate. Hydrobiologia, 581, 269–285.CrossRefGoogle Scholar
Johnson, B. R. and Wallace, J. B. (2005). Bottom-up limitation of a stream salamander in a detritus-based food web. Canadian Journal of Fisheries and Aquatic Sciences, 62, 301–311.CrossRefGoogle Scholar
Johnson, C. R., Luecke, C., Whalen, S. C. and Evans, M. A. (2010). Direct and indirect effects of fish on pelagic nitrogen and phosphorus availability in oligotrophic Arctic Alaskan lakes. Canadian Journal of Fisheries and Aquatic Sciences, 67, 1635–1648.CrossRefGoogle Scholar
Johnson, P. T. J., Olden, J. D., Solomon, C. T. and Vander Zanden, M. J. (2009). Interactions among invaders: community and ecosystem effects of multiple invasive species in an experimental aquatic system. Oecologia, 159, 161–170.CrossRefGoogle Scholar
Jones, C. G., Lawton, J. H. and Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–386.CrossRefGoogle Scholar
Junk, W., Bayley, P. and Sparks, R. (1989). The flood-pulse concept in river-floodplains systems. In Proceedings of the International Large River Symposium, ed. Dodge, D.. Canada: Canadian Special Publication of Fisheries and Aquatic Sciences, pp. 110–127.Google Scholar
Kishi, D., Murakami, M., Nakano, S. and Maekawa, K. (2005). Water temperature determines strength of top-down control in a stream food web. Freshwater Biology, 50, 1315–1322.CrossRefGoogle Scholar
Klausmeier, C. A., Litchman, E., Daufresne, T. and Levin, S. A. (2004). Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature, 429, 171–174.CrossRefGoogle ScholarPubMed
Knoll, L. B., McIntyre, P. B., Vanni, M. J. and Flecker, A. S. (2009). Feedbacks of consumer nutrient recycling on producer biomass and stoichiometry: separating direct and indirect effects. Oikos, 118, 1732–1742.CrossRefGoogle Scholar
Kurle, C. M. and Cardinale, B. J. (2011). Ecological factors associated with the strength of trophic cascades in streams. Oikos, 120, 1897–1908.CrossRefGoogle Scholar
Leibold, M. A. (1989). Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. The American Naturalist, 134, 922–949.CrossRefGoogle Scholar
Leroux, S. J. and Loreau, M. (2008). Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters, 11, 1147–1156.CrossRefGoogle ScholarPubMed
Lewis, W. M. Jr. and Wurtsbaugh, W. A. (2008). Control of lacustrine phytoplankton by nutrients: erosion of the phosphorus paradigm. International Review of Hydrobiologia, 93, 446–465.Google Scholar
Liess, A. and Kahlert, M. (2007). Gastropod grazers and nutrients, but not light, interact in determining periphytic algal diversity. Oecologia, 152, 101–111.CrossRefGoogle Scholar
Liess, A. and Lange, K. (2011). The snail Potamopyrgus antipodarum grows faster and is more active in the shade, independent of food quality. Oecologia, 167(1), 85–96.CrossRefGoogle ScholarPubMed
Lindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399–417.CrossRefGoogle Scholar
Locke, M. A., Knight, S. S., Smith, S. Jr., et al. (2008). Environmental quality research in the Beasley Lake watershed, 1995–2007: succession from conventional to conservation practices. Journal of Soil and Water Conservation, 63, 430–442.CrossRefGoogle Scholar
MacKay, N. A. and Elser, J. J. (1998). Nutrient recycling by Daphnia reduces N-2 fixation by cyanobacteria. Limnology and Oceanography, 43, 347–354.CrossRefGoogle Scholar
Malzahn, A. M., Aberle, N., Clemmesen, C. and Boersma, M. (2007). Nutrient limitation of primary producers affects planktivorous fish condition. Limnology and Oceanography, 52, 2062–2071.CrossRefGoogle Scholar
Malzahn, A. M., Hantzsche, F., Schoo, K. L., Boersma, M. and Aberle, N. (2010). Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia, 162, 35–48.CrossRefGoogle ScholarPubMed
Matthews, W. J. (1998). Patterns in Freshwater Fish Ecology. New York: Chapman & Hall.CrossRefGoogle Scholar
McIntyre, P. B., Jones, L. E., Flecker, A. S. and Vanni, M. J. (2007). Fish extinctions alter nutrient recycling in tropical freshwaters. Proceedings of the National Academy of Sciences of the USA, 104, 4461–4466.CrossRefGoogle ScholarPubMed
McIntyre, P. B., Flecker, A. S., Vanni, M. J., et al. (2008). Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots? Ecology, 89, 2335–2346.CrossRefGoogle ScholarPubMed
McManamay, R. A., Webster, J. R., Valett, H. M. and Dolloff, C. A. (2011). Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. Journal of the North American Benthological Society, 30, 84–102.CrossRefGoogle Scholar
McQueen, D. J., Post, J. R. and Mills, E. L. (1986). Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43, 1571–1581.CrossRefGoogle Scholar
Mette, E. M., Vanni, M. J., Newell, J. M. and Gonzalez, M. J. (2011). Phytoplankton communities and stoichiometry are interactively affected by light, nutrients, and fish. Limnology and Oceanography, 56, 1959–1975.CrossRefGoogle Scholar
Meyer, J. L. and Wallace, J. B. (2001). Lost linkages and lotic ecology: rediscovering small streams. In Ecology: Achievement and Challenge, ed. Press, M., Huntly, N. and Levin, S.. Oxford, UK: Blackwell Science, pp. 295–317.Google Scholar
Mills, K. H. and Chalanchuk, S. M. (1987). Population-dynamics of lake whitefish (Coregonus clupeaformis) during and after the fertilization of Lake 226, The Experimental Lakes Area. Canadian Journal of Fisheries and Aquatic Sciences, 44 (supplement 1), 55–63.CrossRefGoogle Scholar
Moore, J. W. (2006). Animal ecosystem engineers in streams. BioScience, 56, 237–246.CrossRefGoogle Scholar
Moore, J. W. and Schindler, D. E. (2008). Biotic disturbance and benthic community dynamics in salmon-bearing streams. Journal of Animal Ecology, 77, 275–284.CrossRefGoogle ScholarPubMed
Moslemi, J. M., Snider, S. B., MacNeill, K., Gilliam, J. F. and Flecker, A. S. (2012). Impacts of an invasive snail (Tarebia granifera) on nutrient cycling in tropical streams: the role of riparian deforestation in Trinidad, West Indies. PLos One, 7, e38806.CrossRefGoogle ScholarPubMed
Naiman, R. J., Melillo, J. M. and Hobbie, J. E. (1986). Ecosystem alteration of boreal forest streams by beaver (Castor canadensis). Ecology, 67, 1254–1269.CrossRefGoogle Scholar
Naiman, R. J., Bilby, R. E., Schindler, D. E. and Helfield, J. M. (2002). Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems, 5, 399–417.CrossRefGoogle Scholar
Naiman, R. J., Helfield, J. M., Bartz, K. K., Drake, D. C. and Honea, J. M. (2009). Pacific salmon, marine-derived nutrients, and the characteristics of aquatic and riparian ecosystems. American Fisheries Society Symposium, 69, 395–425.Google Scholar
Nakano, S., Miyasaka, H. and Kuhara, N. (1999). Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology, 80, 2435–2441.Google Scholar
Pace, M. L., Cole, J. J., Carpenter, S. R. and Kitchell, J. F. (1999). Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution, 14, 483–488.CrossRefGoogle ScholarPubMed
Pace, M. L., Cole, J. J., Carpenter, S. R., et al. (2004). Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427, 240–243.CrossRefGoogle ScholarPubMed
Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure. The Journal of Animal Ecology, 49, 666–685.CrossRefGoogle Scholar
Peckarsky, B. L., McIntosh, A. R., Álvarez, M. and Moslemi, J. M. (2013). Nutrient limitation controls the strength of behavioral trophic cascades in high elevation streams. Ecosphere, 4, 110.CrossRefGoogle Scholar
Peterson, B., Fry, B., Deegan, L. and Hershey, A. (1993). The trophic significance of epilithic algal production in a fertilized tundra river ecosystem. Limnology and Oceanography, 38, 872–878.CrossRefGoogle Scholar
Peterson, D. P. and Foote, C. J. (2000). Disturbance of small-stream habitat by spawning sockeye salmon in Alaska. Transactions of the American Fisheries Society, 129, 924–934.2.3.CO;2>CrossRefGoogle Scholar
Polis, G. A., Anderson, W. B. and Holt, R. D. (1997). Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.CrossRefGoogle Scholar
Pollock, M. M., Heim, M. and Naiman, R. J. (2003). Hydrologic and geomorphic effects of beaver dams and their influence on fishes. In The Ecology and Management of Wood in World Rivers, ed. Gregory, S. V., Boyer, K. and Gurnell, A.. Bethesda, MD: American Fisheries Society, pp. 213–234.Google Scholar
Power, M. E. (1990). Resource enhancement by indirect effects of grazers: armored catfish, algae, and sediment. Ecology, 71, 897–904.CrossRefGoogle Scholar
Power, M. E. (1992). Top-down and bottom-up forces in food webs: do plants have primacy? Ecology, 73, 733–746.CrossRefGoogle Scholar
Power, M. E., Matthews, W. J. and Stewart, A. J. (1985). Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology, 66, 1448–1456.CrossRefGoogle Scholar
Power, M. E., Parker, M. S. and Dietrich, W. E. (2008). Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecological Monographs, 78, 263–282.CrossRefGoogle Scholar
Pringle, C. M., Blake, G. A., Covich, A. P., Buzby, K. M. and Finley, A. (1993). Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass. Oecologia, 93, 1–11.CrossRefGoogle Scholar
Riley, R. H., Townsend, C. R., Raffaelli, D. A. and Flecker, A. S. (2004). Sources and effects of subsidies along the stream-estuary continuum. In Food Webs at the Landscape Level, ed. Polis, G. A., Power, M. E. and Huxel, G. R.. Chicago, IL: The University of Chicago Press, pp. 241–267.Google Scholar
Rosemond, A. D., Pringle, C. M., Ramirez, A., Paul, M. J. and Meyer, J. L. (2002). Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnology and Oceanography, 47, 278–289.CrossRefGoogle Scholar
Schaus, M. H., Vanni, M. J., Wissing, T. E., Bremigan, M. T., Garvey, J. E. and Stein, R. A. (1997). Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography, 42, 1386–1397.CrossRefGoogle Scholar
Schaus, M. H., Vanni, M. J. and Wissing, T. E. (2002). Biomass-dependent diet shifts in omnivorous gizzard shad: implications for growth, food web, and ecosystem effects. Transactions of the American Fisheries Society, 131, 40–54.2.0.CO;2>CrossRefGoogle Scholar
Schaus, M. H., Godwin, W., Battoe, L., et al. (2010). Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshwater Biology, 55, 2401–2413.CrossRefGoogle Scholar
Scheffer, M. and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648–656.CrossRefGoogle Scholar
Scheuerell, M. D., Moore, J. W., Schindler, D. E. and Harvey, C. J. (2007). Varying effects of anadromous sockeye salmon on the trophic ecology of two species of resident salmonids in Southwest Alaska. Freshwater Biology, 52, 1944–1956.CrossRefGoogle Scholar
Schindler, D. E., Kitchell, J. F., He, X., Carpenter, S. R., Hodgson, J. R. and Cottingham, K. L. (1993). Food-web structure and phosphorus cycling in lakes. Transactions of the American Fisheries Society, 122, 756–772.2.3.CO;2>CrossRefGoogle Scholar
Schindler, D. E., Knapp, R. A. and Leavitt, P. R. (2001). Alteration of nutrient cycles and algal production resulting from fish introductions into mountain lakes. Ecosystems, 4, 308–321.CrossRefGoogle Scholar
Schindler, D. E., Scheuerell, M. D., Moore, J. W., et al. (2003). Pacific salmon and the ecology of coastal ecosystems. Frontiers in Ecology and the Environment, 1, 31–37.CrossRefGoogle Scholar
Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science, 195, 260–262.CrossRefGoogle Scholar
Schindler, D. W. (1978). Factors regulating phytoplankton production and standing crop in the world's freshwaters. Limnology and Oceanography, 23, 478–486.CrossRefGoogle Scholar
Schoo, K. L., Aberle, N., Malzahn, A. M. and Boersma, M. (2012). Food quality affects secondary consumers even at low qualities: an experimental test with larval European lobster. PLoS One, 7, e33550.CrossRefGoogle ScholarPubMed
Shapiro, J., Lamarra, V. and Lynch, M. (1975). Biomanipulation: an ecosystem approach to lake restoration. In Symposium on Water Quality Management through Biological Control, Gainesville, FL. ed. Brezonik, P. L. and Fox, J. L.. Gainesville, FL: University of Florida, pp. 85–96.Google Scholar
Shostell, J. and Bukaveckas, P. A. (2004). Seasonal and interannual variation in N and P fluxes associated with tributary inputs, consumer recycling and algal growth. Aquatic Ecology, 38, 359–373.CrossRefGoogle Scholar
Shurin, J. B., Gruner, D. S. and Hillebrand, H. (2006). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society of London B, 273, 1–9.CrossRefGoogle ScholarPubMed
Simon, K. S., Townsend, C. R., Biggs, B. J. F., Bowden, W. B. and Frew, R. D. (2004). Habitat-specific nitrogen dynamics in New Zealand streams containing native or invasive fish. Ecosystems, 7, 777–792.CrossRefGoogle Scholar
Small, G. E., Pringle, C. M., Pyron, M. and Duff, J. H. (2011). Role of the fish Astyanax aeneus (Characidae) as a keystone nutrient recycler in low-nutrient Neotropical streams. Ecology, 92, 386–397.CrossRefGoogle ScholarPubMed
Smith, V. H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green-algae in lake phytoplankton. Science, 221, 669–671.CrossRefGoogle ScholarPubMed
Smith, V. H. and Schindler, D. W. (2009). Eutrophication science: where do we go from here?Trends in Ecology and Evolution, 24, 201–207.CrossRefGoogle Scholar
Smith, V. H., Joye, S. B. and Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51, 351–355.CrossRefGoogle Scholar
Søndergaard, M., Liboriussen, L., Pedersen, A. R. and Jeppesen, E. (2008). Lake restoration by fish removal: short- and long-term effects in 36 Danish lakes. Ecosystems, 11, 1291–1305.CrossRefGoogle Scholar
Sousa, R., Gutiérrez, J. L. and Aldridge, D. C. (2009). Non-indigenous invasive bivalves as ecosystem engineers. Biological Invasions, 11, 2367–2385.CrossRefGoogle Scholar
Sousa, R., Novais, A., Costa, R. and Strayer, D. L. (2013). Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies. Hydrobiologia, in press.Google Scholar
Spooner, D. E., Frost, P. C., Hillebrand, H., et al. (2013). Nutrient loading associated with agriculture land use dampens the importance of consumer-mediated niche construction. Ecology Letters, 16(9), 1115–1125.CrossRefGoogle ScholarPubMed
Sterner, R. W. and Elser, J. J. (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University Press.Google Scholar
Sterner, R. W., Elser, J. J., Fee, E. J., Guildford, S. J. and Chrzanowski, T. H. (1997). The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. American Naturalist, 150, 663–684.CrossRefGoogle ScholarPubMed
Strayer, D. L. (2010). Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology, 55, 152–174.CrossRefGoogle Scholar
Strayer, D. L. (2012). Eight questions about invasions and ecosystem functioning. Ecology Letters, 15, 1199–1210.CrossRefGoogle ScholarPubMed
Strayer, D. L. and Dudgeon, D. (2010). Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society, 29, 344–358.CrossRefGoogle Scholar
Strayer, D. L., Caraco, N. F., Cole, J. J., Findlay, S. and Pace, M. L. (1999). Transformation of freshwater ecosystems by bivalves: a case study of zebra mussels in the Hudson River. Bioscience, 49, 19–27.CrossRefGoogle Scholar
Striebel, M., Sporl, G. and Stibor, H. (2008). Light-induced changes of plankton growth and stoichiometry: experiments with natural phytoplankton communities. Limnology and Oceanography, 53, 513–522.CrossRefGoogle Scholar
Striebel, M., Behl, S. and Stibor, H. (2009). The coupling of biodiversity and productivity in phytoplankton communities: consequences for biomass stoichiometry. Ecology, 90, 2025–2031.CrossRefGoogle ScholarPubMed
Taylor, B. W., Flecker, A. S. and Hall, R. O. Jr. (2006). Loss of harvested fish species disrupts carbon flow in a diverse tropical river. Science, 313, 833–836.CrossRefGoogle Scholar
Taylor, J. M., Back, J. A. and King, R. S. (2012a). Grazing minnows increase benthic autotrophy and enhance the response of periphyton elemental composition to experimental phosphorus additions. Freshwater Science, 31, 451–462.CrossRefGoogle Scholar
Taylor, J. M., Back, J. A., Valenti, T. W. and King, R. S. (2012b). Fish-mediated nutrient cycling and benthic microbial processes: can consumers influence stream nutrient cycling at multiple spatial scales? Freshwater Science, 31, 928–944.CrossRefGoogle Scholar
Tessier, A. J. and Woodruff, P. (2002). Cryptic trophic cascade along a gradient of lake size. Ecology, 83, 1263–1270.CrossRefGoogle Scholar
Torres, L. E. and Vanni, M. J. (2007). Stoichiometry of nutrient excretion by fish: interspecific variation in a hypereutrophic lake. Oikos, 116, 259–270.CrossRefGoogle Scholar
Townsend, C. R. (2003). Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conservation Biology, 17, 38–47.CrossRefGoogle Scholar
Vadeboncoeur, Y., Jeppesen, E., Vander Zanden, M. J., et al. (2003). From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography, 48, 1408–1418.CrossRefGoogle Scholar
Vander Zanden, M. J., Vadeboncoeur, Y. and Chandra, S. (2011). Fish reliance on littoral-benthic resources and the distribution of primary production in lakes. Ecosystems, 14, 894–903.CrossRefGoogle Scholar
Vanni, M. J. (2002). Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics, 33, 341–370.CrossRefGoogle Scholar
Vanni, M. J., Flecker, A. S., Hood, J. M. and Headworth, J. L. (2002). Stoichiometry of nutrient cycling by vertebrates in a tropical stream: linking species identity and ecosystem processes. Ecology Letters, 5, 285–293.CrossRefGoogle Scholar
Vanni, M. J., Arend, K. K., Bremigan, M. T., et al. (2005). Linking landscapes and food webs: effects of omnivorous fish and watersheds on reservoir ecosystems. BioScience, 55, 155–167.CrossRefGoogle Scholar
Vanni, M. J., Bowling, A. M., Dickman, E. M., et al. (2006). Nutrient cycling by fish supports relatively more primary production as lake productivity increases. Ecology, 87, 1696–1709.CrossRefGoogle ScholarPubMed
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130–137.CrossRefGoogle Scholar
Vaughn, C. C. (2010). Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. Bioscience, 60, 25–35.CrossRefGoogle Scholar
Wallace, J. B., Eggert, S. L., Meyer, J. L. and Webster, J. R. (1999). Effects of resource limitation on a detrital-based ecosystem. Ecological Monographs, 69, 409–442.CrossRefGoogle Scholar
Wetzel, R. G. (2001). Limnology – Lake and River Ecosystems. San Diego, CA: Elsevier/Academic Press.Google Scholar
Whiles, M. R., Lips, K. R., Pringle, C. M., et al. (2006). The effects of amphibian population declines on the structure and function of Neo-tropical stream ecosystems. Frontiers in Ecology and the Environment, 4, 27–34.CrossRefGoogle Scholar
Whiles, M. R., Hall Jr., R. O., Dodds, W. K., et al. (2013). Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems, 16, 146–157.CrossRefGoogle Scholar
Willson, M. F., Gende, S. M. and Marston, B. H. (1998). Fishes and the forest. Bioscience, 48, 455–462.CrossRefGoogle Scholar
Wilson, H. F. and Xenopoulos, M. A. (2011). Nutrient recycling by fish in streams along a gradient of agricultural land use. Global Change Biology, 17, 130–139.CrossRefGoogle Scholar
Winemiller, K. O. and Jepsen, D. B. (2004). Migratory neotropical fish subsidize food webs of oligotrophic blackwater rivers. In Food Webs at the Landscape Level, ed. Polis, G. A., Power, M. E. and Huxel, G. R.. Chicago, IL: University of Chicago Press, pp. 115–132.Google Scholar
Winemiller, K. O., Tarim, S., Shormann, D. and Cotner, J. B. (2000). Fish assemblage structure in relation to environmental variation among Brazos River oxbow lakes. Transactions of the American Fisheries Society, 129, 451–468.2.0.CO;2>CrossRefGoogle Scholar
Wootton, J. T. and Power, M. E. (1993). Productivity, consumers, and the structure of a river food chain. Proceedings of the National Academy of Sciences of the USA, 90, 1384–1387.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×