from Part III - Patterns and Processes
Published online by Cambridge University Press: 05 May 2015
Introduction
The flow of energy, carbon, and nutrients through food webs is constrained by the abilities of constituent organisms to consume, assimilate, and excrete resources. There is a growing recognition that the range of these abilities is positively correlated with community diversity and thus, variation in diversity can directly impact the functioning of food webs and ecosystems (Loreau et al., 2001; Naeem, 2002; Hooper et al., 2005). For instance, the strong influence of trophic diversity, or the number of trophic levels in a food web, is recognized as an important predictor of the standing stock and productivity of primary producers and herbivores (Hairston et al., 1960; Carpenter et al., 1985). In addition to trophic diversity, the diversity of competitors, from genotypic diversity within a species (Whitham et al., 2006; Hughes et al., 2008), to species diversity (Loreau et al., 2001; Naeem, 2002; Hooper et al., 2005), to broad phylogenetic diversity (Cadotte et al., 2008), can strongly influence ecosystem functions, including the uptake and assimilation of limiting nutrients and the stability of food webs through time.
In this chapter, I review the current understanding of the direct influences of competitor species richness on the transfer of energy and nutrients through food webs; a topic that has received a huge amount of attention over the past two decades (Naeem, 2008; Hooper et al., 2012). In part, the motivation to understand the influence of species richness on ecosystem functions has been prompted by a need to understand the ecosystem consequences of global species losses (Loreau et al., 2001; Naeem, 2002, Hooper et al., 2005; 2012; also, see Chapter 14). However, diversity varies across landscapes for a number of deterministic and stochastic reasons (MacArthur, 1967; Rosenzweig, 1995), and understanding the causes and consequences of this variation has resulted in a more broadly informative integration of community and ecosystem ecology with relevance beyond the implications of global species loss (Loreau et al., 2001).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.