Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T04:12:22.047Z Has data issue: false hasContentIssue false

5 - Parvovirus B19 (human erythroviruses)

from Section 1 - Agents

Published online by Cambridge University Press:  12 January 2010

Kevin E. Brown
Affiliation:
Consultant Medical Virologist; Unit Head, Immunisation and Diagnosis, Virus Reference Department Centre for Infections Health Protection Agency, London, UK
John A. J. Barbara
Affiliation:
University of the West of England, Bristol
Fiona A. M. Regan
Affiliation:
HNSBT and Hammersmith Hospitals NHS Trust, London
Marcela Contreras
Affiliation:
University of the West of England, Bristol
Get access

Summary

Parvovirus B19 (B19V)

Definition and characteristics of agent

Parvoviruses are small, 20–25 nm icosahedral viruses (see Figure 5.1), encapsidating a linear single stranded DNA genome of approximately 4000–6000 nucleotides. The family (Parvoviridae) is divided into two subfamilies based on their host species and viral coding strategies, the Parvovirinae that infect vertebrates, including fish, birds, reptiles and mammals, and the Densovirinae that infect insects. The Parvovirinae are similarly divided into five genera, Parvovirus, Dependovirus, Erythrovirus, Bocavirus and Amdovirus, based on the number of promoters, their transcription map, the similarity of the 5′ and 3′ terminal repeat sequences, and their sequence homology (Fauquet et al., 2005). Several different parvoviruses have been identified in humans, including adeno-associated viruses (AAVs), Parv4 (Jones et al., 2005) and Parv5 (Fryer et al., 2006), human bocavirus (Allander et al., 2005), and parvovirus B19 (B19V) (Cossart et al., 1975), but only parvovirus B19 has definitively been shown to be a human pathogen.

B19V was the first member to be described and is the type species of the genus Erythrovirus. The virus has a genome of 5596 nucleotides, consisting of an internal coding sequence of 4830 nucleotides, flanked by identical terminal repeat sequences at the 5′ and 3′ end of 383 nucleotides which form the imperfect palindrome and hairpin structures necessary for DNA replication and encapsidation.

Sequence conservation and parvovirus B19 genotypes

The B19V genome is relatively well conserved, with approximately 10% sequence variation between isolates, but has three distinct genotypes (Servant et al., 2002).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allander, T., Tammi, M. T., Eriksson, M., et al. (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. U.S.A, 102 (36), 12891–6.CrossRefGoogle ScholarPubMed
Anderson, M. J., Higgins, P. G., Davis, L. R., et al. (1985) Experimental parvoviral infection in humans. Journal of Infectious Diseases, 152, 257–65.CrossRefGoogle ScholarPubMed
Arnold, D. M., Neame, P. B., Meyer, R. M., et al. (2005) Autologous peripheral blood progenitor cells are a potential source of parvovirus B19 infection. Transfusion, 45, 394–8.CrossRefGoogle ScholarPubMed
Azzi, A., Morfini, M. and Mannucci, P. M. (1999) The transfusion-associated transmission of parvovirus B19. Transfus. Med. Rev, 13, 194–204.CrossRefGoogle ScholarPubMed
Ballou, W. R., Reed, J. L., Noble, W., et al. (2003) Safety and immunogenicity of a recombinant parvovirus B19 vaccine formulated with MF59 C.1. J Infec Dis, 187, 675–8.CrossRefGoogle Scholar
Bansal, G. P., Hatfield, J. A., Dunn, F. E., et al. (1993) Candidate recombinant vaccine for human B19 parvovirus. J Infect Dis, 167, 1034–44.CrossRefGoogle ScholarPubMed
Baylis, S. A., Shah, N. and Minor, P. D. (2004) Evaluation of different assays for the detection of parvovirus B19 DNA in human plasma. J Virol Methods, 121, 7–16.CrossRefGoogle ScholarPubMed
Blumel, J., Schmidt, I., Effenberger, W., et al. (2002a) Parvovirus B19 transmission by heat-treated clotting factor concentrates. Transfusion, 42(11), 1473–81.CrossRefGoogle Scholar
Blumel, J., Schmidt, I., Willkommen, H., et al. (2002b) Inactivation of parvovirus B19 during pasteurization of human serum albumin. Transfusion, 42, 1011–18.CrossRefGoogle Scholar
Braham, S., Gandhi, J., Beard, S., et al. (2004) Evaluation of the Roche LightCycler parvovirus B19 quantification kit for the diagnosis of parvovirus B19 infections. J Clin Virol, 31, 5–10.CrossRefGoogle Scholar
Brown, K. E. and Cohen, B. J. (1992) Haemagglutination by parvovirus B19. J Gen Virol, 73, 2147–9.CrossRefGoogle ScholarPubMed
Brown, K. E. and Young, N. S. (1997). The simian parvoviruses. Rev Med Virol, 7, 211–8.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Brown, K. E., Anderson, S. M. and Young, N. S. (1993) Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science, 262, 114–7.CrossRefGoogle ScholarPubMed
Brown, K. E., Green, S. W., Antunez de Mayolo, J., et al. (1994) Congenital anaemia after transplacental B19 parvovirus infection. Lancet, 343, 895–6.CrossRefGoogle ScholarPubMed
Brown, K. E., Liu, Z., Gallinella, G., et al. (2004) Simian parvovirus infection: a potential zoonosis. J Infec Dis, 190, 1900–7.CrossRefGoogle ScholarPubMed
Brown, K. E., Mori, J., Cohen, B. J., et al. (1991) In vitro propagation of parvovirus B19 in primary foetal liver culture. J Gen Virol, 72, 741–45.CrossRefGoogle ScholarPubMed
Brown, K. E., Young, N. S., Alving, B. M., et al. (2001) Parvovirus B19: implications for transfusion medicine. Summary of a workshop. Transfusion, 41(1), 130–5.CrossRefGoogle ScholarPubMed
Candotti, D., Etiz, N., Parsyan, A., et al. (2004) Identification and characterization of persistent human erythrovirus infection in blood donor samples. J Virol, 78, 12169–178.CrossRefGoogle ScholarPubMed
Cartter, M. L., Farley, T. A., Rosengren, S., et al. (1991) Occupational risk factors for infection with parvovirus B19 among pregnant women. J Infect Dis, 163, 282–5.CrossRefGoogle ScholarPubMed
Chorba, T., Coccia, P., Holman, R. C., et al. (1986) The role of parvovirus B19 in aplastic crisis and erythema infectiosum (fifth disease). J Infect Dis, 154, 383–93.CrossRefGoogle Scholar
Cohen, B. J. and Brown, K. E. (1992) Laboratory infection with human parvovirus B19 (letter). J Infect, 24, 113–4.CrossRefGoogle Scholar
Cohen, B. J. and Buckley, M. M. (1988) The prevalence of antibody to human parvovirus B19 in England and Wales. J Med Microbiol, 25, 151–3.CrossRefGoogle ScholarPubMed
Cohen, B. J., Beard, S., Knowles, W. A., et al. (1997) Chronic anemia due to parvovirus B19 infection in a bone marrow transplant patient after platelet transfusion. Transfusion, 37, 947–52.CrossRefGoogle Scholar
Cohen, B. J., Field, A. M., Gudnadottir, S., et al. (1990) Blood donor screening for parvovirus B19. J Virol Methods, 30, 233–8.CrossRefGoogle ScholarPubMed
Corcoran, A., Doyle, S., Allain, J. P., et al. (2005) Evidence of serological cross-reactivity between genotype 1 and genotype 3 erythrovirus infections. J Virol, 79, 5238–9.CrossRefGoogle ScholarPubMed
Cossart, Y. E., Field, A. M., Cant, B.,et al. (1975) Parvovirus-like particles in human sera. Lancet, i, 72–3.CrossRefGoogle Scholar
Council of Europe (2005a) Human anti-D immunoglobulin. No. 0557. European Pharmacopoeia, 5, 1732–3.
Council of Europe (2005b) Human anti-D-immunoglobulin for intravenous administration. No. 1527. European Pharmacopoeia, 5, 1733.
Council of Europe (2005c) Human plasma (pooled and treated for virus inactivation). No. 1646. European Pharmacopoeia, 5, 1747–8.
Courouce, A. M., Beaulieu, M. J., Bouchardeau, F., et al. (1985) Viraemia with human parvovirus (letter). Lancet, i, 1218–19.CrossRefGoogle Scholar
Cruz, A. da Silva, Serpa, M. J., Barth, O. M., et al. (1989) Detection of the human parvovirus B19 in a blood donor plasma in Rio de Janeiro. Mem Inst Oswaldo Cruz, 84, 279–80.CrossRefGoogle Scholar
Current Trends risks associated with human parvovirus B19 infection. (1989). MMWR Morb Mortal Wkly Rep, 38, 81–97.
Doerig, C., Hirt, B., Antonietti, J. P., et al. (1990) Non-structural protein of parvoviruses B19 and minute virus of mice controls transcription. J Virol, 64, 387–96.Google Scholar
Dorsch, S., Liebisch, G., Kaufmann, B., et al. (2002) The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity. J Virol, 76, 2014–18.CrossRefGoogle ScholarPubMed
Durigon, E. L., Erdman, D. D., Gary, G. W., et al. (1993) Multiple primer pairs for polymerase chain reaction (PCR) amplification of human parvovirus B19 DNA. J Virol Methods, 44, 155–65.CrossRefGoogle ScholarPubMed
Erdman, D. D., Anderson, B. C., Torok, T. J., et al. (1997) Possible transmission of parvovirus B19 from intravenous immune globulin. J Med Virol, 53, 233–6.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Fauquet, C. M., Mayo, M. A., Maniloff, J., et al. (2005) Virus Taxonomy: Classification and Nomenclature of Viruses: Eighth Report of the International Committee on Taxonomy of Viruses. New York, Elsevier Academic Press.Google Scholar
Frickhofen, N., Abkowitz, J. L., Safford, M., et al. (1990) Persistent B19 parvovirus infection in patients infected with human immunodeficiency virus type 1 (HIV-1): a treatable cause of anemia in AIDS. Ann Intern Med, 113, 926–33.CrossRefGoogle Scholar
Fryer, J. F., Kapoor, A., Minor, P. D., et al. (2006) Novel parvovirus and related variant in human plasma. Emerg Infect Dis 12(1): 151–4.CrossRefGoogle ScholarPubMed
Groeneveld, K. and Noordaa, J. (2003) Blood products and parvovirus B19. Neth J Med, 61(5), 154–6.Google ScholarPubMed
Grossman, Z., Mendelson, E., Brok-Simoni, F., et al. (1992) Detection of adeno-associated virus type 2 in human peripheral blood cells. J Gen Virol, 73, 961–6.CrossRefGoogle ScholarPubMed
Hayakawa, F., Imada, K., Towatari, M., et al. (2002) Life-threatening human parvovirus B19 infection transmitted by intravenous immune globulin. Br J Haematol, 118, 1187–9.CrossRefGoogle ScholarPubMed
Heegaard, E. D., Hasle, H., Skibsted, L., et al. (2000) Congenital anemia caused by parvovirus B19 infection. Pediatr Infect Dis J, 19, 1216–8.CrossRefGoogle ScholarPubMed
Heegaard, E. D., Panum, J. I. and Christensen, J. (2001) Novel PCR assay for differential detection and screening of erythrovirus B19 and erythrovirus V9. J Med Virol, 65, 362–7.CrossRefGoogle ScholarPubMed
Heegaard, E. D., Petersen, B. L., Heilmann, C. J., et al. (2002a) Prevalence of parvovirus B19 and parvovirus V9 DNA and antibodies in paired bone marrow and serum samples from healthy individuals. J Clin Microbiol, 40, 933–6.CrossRefGoogle Scholar
Heegaard, E. D., Qvortrup, K. and Christensen, J. (2002b) Baculovirus expression of erythrovirus V9 capsids and screening by ELISA: serologic cross-reactivity with erythrovirus B19. J Med Virol, 66, 246–52.CrossRefGoogle Scholar
Hino, M., Ishiko, O., Honda, K. I., et al. (2000) Transmission of symptomatic parvovirus B19 infection by fibrin sealant used during surgery. Br J Haematol, 108, 194–5.CrossRefGoogle ScholarPubMed
Hitzler, W. E. and Runkel, S. (2002) Prevalence of human parvovirus B19 in blood donors as determined by a haemagglutination assay and verified by the polymerase chain reaction. Vox Sang, 82, 18–23.CrossRefGoogle ScholarPubMed
Hokynar, K., Norja, P., Laitinen, H., et al. (2004) Detection and differentiation of human parvovirus variants by commercial quantitative real-time PCR tests. J Clin Microbiol, 42, 2013–9.CrossRefGoogle ScholarPubMed
Hokynar, K., Soderlund-Venermo, M., Pesonen, M., et al. (2002) A new parvovirus genotype persistent in human skin. Virology, 302(2), 224–8.CrossRefGoogle ScholarPubMed
Jones, M. S., Kapoor, A., Lukashov, V. V., et al. (2005) New DNA viruses identified in patients with acute viral infection syndrome. J Virol, 79(13), 8230–6.CrossRefGoogle ScholarPubMed
Jordan, J., Tiangco, B., Kiss, J., et al. (1998) Human parvovirus B19: prevalence of viral DNA in volunteer blood donors and clinical outcomes of transfusion recipients. Vox Sang, 75, 97–102.CrossRefGoogle ScholarPubMed
Jordan, J. A. (1996) Identification of human parvovirus B19 infection in idiopathic non-immune hydrops fetalis. Am J Obstet Gynecol, 174, 37–42.CrossRefGoogle Scholar
Kajigaya, S., Fujii, H., Field, A., et al. (1991) Self-assembled B19 parvovirus capsids, produced in a baculovirus system, are antigenically and immunogenically similar to native virions. Proceedings of the National Academy of Science USA, 88, 4646–50.CrossRefGoogle Scholar
Kawamura, M., Sawafuji, M., Watanabe, M., et al. (2002) Frequency of transmission of human parvovirus B19 infection by fibrin sealant used during thoracic surgery. Ann Thorac Surg, 73, 1098–100.CrossRefGoogle ScholarPubMed
Koch, W. C. and Adler, S. P. (1989) Human parvovirus B19 infections in women of childbearing age and within families. Pediatr Infect Dis J, 8, 83–7.Google ScholarPubMed
Koenigbauer, U. F., Eastlund, T. and Day, J. W. (2000) Clinical illness due to parvovirus B19 infection after infusion of solvent/detergent-treated pooled plasma. Transfusion, 40, 1203–6.CrossRefGoogle ScholarPubMed
Kurtzman, G., Frickhofen, N., Kimball, J., et al. (1989) Pure red-cell aplasia of 10 years' duration due to persistent parvovirus B19 infection and its cure with immunoglobulin therapy. New Eng J Med, 321, 519–23.CrossRefGoogle ScholarPubMed
Kurtzman, G. J., Cohen, B., Meyers, P., et al. (1988) Persistent B19 parvovirus infection as a cause of severe chronic anaemia in children with acute lymphocytic leukaemia. Lancet, ii, 1159–62.CrossRefGoogle Scholar
Kurtzman, G. J., Ozawa, K., Cohen, B., et al. (1987) Chronic bone marrow failure due to persistent B19 parvovirus infection. New Eng J Med, 317, 287–94.CrossRefGoogle ScholarPubMed
McOmish, F., Yap, P. L., Jordan, A., et al. (1993) Detection of parvovirus B19 in donated blood: a model system for screening by polymerase chain reaction. J Clin Microbiol, 31, 323–8.Google ScholarPubMed
Miller, E., Fairley, C. K., Cohen, B. J., et al. (1998) Immediate and long-term outcome of human parvovirus B19 infection in pregnancy. British J Obstet Gynaecol, 105, 174–8.CrossRefGoogle ScholarPubMed
Miyagawa, E., Yoshida, T., Takahashi, H., et al. (1999) Infection of the erythroid cell line, KU812Ep6 with human parvovirus B19 and its application to titration of B19 infectivity. J Virol Methods, 83, 45–54.CrossRefGoogle ScholarPubMed
Moffatt, S., Yaegashi, N., Tada, K., et al. (1998) Human parvovirus B19 non-structural (NS1) protein induces apoptosis in erythroid lineage cells. J Virol, 72, 3018–28.Google Scholar
Morita, E., Tada, K., Chisaka, H., et al. (2001) Human parvovirus B19 induces cell cycle arrest at G(2) phase with accumulation of mitotic cyclins. J Virol, 75, 7555–63.CrossRefGoogle Scholar
Mortimer, P. P., Humphries, R. K., Moore, J. G., et al. (1983a) A human parvovirus-like virus inhibits haematopoietic colony formation in vitro. Nature, 302, 426–9.CrossRefGoogle Scholar
Mortimer, P. P., Luban, N. L., Kelleher, J. F., et al. (1983b) Transmission of serum parvovirus-like virus by clotting-factor concentrates. Lancet, ii, 482–4.CrossRefGoogle Scholar
Musiani, M., Zerbini, M., Gentilomi, G., et al. (1995) Parvovirus B19 clearance from peripheral blood after acute infection. J Infect Dis, 172, 1360–3.CrossRefGoogle ScholarPubMed
Nguyen, Q. T., Sifer, C., Schneider, V., et al. (1999) Novel human erythrovirus associated with transient aplastic anemia. J Clin Microbiol, 37, 2483–7.Google ScholarPubMed
Nguyen, Q. T., Wong, S., Heegaard, E. D., et al. (2002) Identification and characterization of a second novel human erythrovirus variant, A6. Virology, 301, 374–80.CrossRefGoogle ScholarPubMed
Nubling, C. M., Daas, A. and Buchheit, K. H. (2004) Collaborative study for establishment of a European Pharmacopoei Biological Reference Preparation (BRP) for B19 virus DNA testing of plasma pools by nucleic acid amplification technique. Pharmeuropa Bio, 2003(2), 27–34.Google ScholarPubMed
O'Neill, H. J. and Coyle, P. V. (1992) Two anti-parvovirus B19 IgM capture assays incorporating a mouse monoclonal antibody specific for B19 viral capsid proteins VP 1 and VP 2. Arch Virol, 123, 125–34.CrossRefGoogle ScholarPubMed
Ozawa, K., Kurtzman, G. and Young, N. (1986) Replication of the B19 parvovirus in human bone marrow cell cultures. Science, 233, 883–6.CrossRefGoogle ScholarPubMed
Patou, G., Pillay, D., Myint, S., et al. (1993) Characterization of a nested polymerase chain reaction assay for detection of parvovirus B19. J Clin Microbiol, 31, 540–6.Google ScholarPubMed
Prikhod'ko, G. G., Vasilyeva, I., Reyes, H., et al. (2005) Evaluation of a new LightCycler reverse transcription-polymerase chain reaction infectivity assay for detection of human parvovirus B19 in dry-heat inactivation studies. Transfusion, 45, 1011–19.CrossRefGoogle ScholarPubMed
Public Health Laboratory Service Working Party on Fifth Disease (1990) Prospective study of human parvovirus (B19) infection in pregnancy. BMJ, 300, 1166–70.CrossRef
Saikawa, T., Anderson, S., Momoeda, M., et al. (1993) Neutralizing linear epitopes of B19 parvovirus cluster in the VP1 unique and VP1-VP2 junction regions. J Virol, 67, 3004–9.Google ScholarPubMed
Sakata, H., Ihara, H., Sato, S., et al. (1999) Efficiency of donor screening for human parvovirus B19 by the receptor-mediated hemagglutination assay method. Vox Sang, 77, 197–203.CrossRefGoogle ScholarPubMed
Saldanha, J. and Minor, P. (1996) Detection of human parvovirus B19 DNA in plasma pools and blood products derived from these pools: implications for efficiency and consistency of removal of B19 DNA during manufacture. Br J Haematol, 93, 714–9.CrossRefGoogle ScholarPubMed
Sayers, M. H. (1994) Transfusion-transmitted viral infections other than hepatitis and human immunodeficiency virus infection. Cytomegalovirus, Epstein-Barr virus, human herpes virus 6, and human parvovirus B19. Arch Pathol Lab Med, 118, (4), 346–9.Google ScholarPubMed
Schneider, B., Becker, M., Brackmann, H. H., et al. (2004) Contamination of coagulation factor concentrates with human parvovirus B19 genotype 1 and 2. Thromb Haemost, 92, 838–45.Google ScholarPubMed
Schwarz, T. F., Serke, S., Brunn, A., et al. (1992) Heat stability of parvovirus B19: kinetics of inactivation. Int J Med Microbiol Virol Parasitol Infect Dis, 277, 219–23.Google ScholarPubMed
Servant, A., Laperche, S., Lallemand, F., et al. (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol, 76, 9124–34.CrossRefGoogle ScholarPubMed
Shimomura, S., Komatsu, N., Frickhofen, N., et al. (1992) First continuous propagation of B19 parvovirus in a cell line. Blood, 79, 18–24.Google ScholarPubMed
Smith-Whitley, K., Zhao, H., Hodinka, R. L., et al. (2004) Epidemiology of human parvovirus B19 in children with sickle cell disease. Blood, 103, 422–7.CrossRefGoogle ScholarPubMed
Soderlund, M., Essen, R., Haapasaari, J., et al. (1997) Persistence of parvovirus B19 DNA in synovial membranes of young patients with and without chronic arthropathy. Lancet, 349, 1063–5.CrossRefGoogle ScholarPubMed
Solheim, B. G., Rollag, H., Svennevig, J. L., et al. (2000) Viral safety of solvent/detergent-treated plasma. Transfusion, 40, 84–90.CrossRefGoogle ScholarPubMed
Speyer, I., Breedveld, F. C. and Dijkmans, B. A. (1998) Human parvovirus B19 infection is not followed by inflammatory joint disease during long term follow-up. A retrospective study of 54 patients. Clin Exp Rheumatol, 16, 576–8.Google Scholar
Tabor, E. and Epstein, J. S. (2002) NAT screening of blood and plasma donations: evolution of technology and regulatory policy. Transfusion, 42(9), 1230–7.CrossRefGoogle ScholarPubMed
Takahashi, Y., Murai, C., Shibata, S., et al. (1998) Human parvovirus B19 as a causative agent for rheumatoid arthritis. Proceedings of the National Academy of Science USA, 95, 8227–32.CrossRefGoogle ScholarPubMed
Török, T. J. (1997). Unusual clinical manifestations reported in patients with parvovirus B19 infection. L. J. Anderson and N. S. Young Human parvovirus B19. 1(20), 61–92. Basel, Karger. Monographs in Virology. Parks, W. P. 1997. Ref Type: Serial (Book, Monograph).
Tsujimura, M., Matsushita, K., Shiraki, H., et al. (1995) Human parvovirus B19 infection in blood donors. Vox Sang, 69, 206–12.CrossRefGoogle ScholarPubMed
Wakamatsu, C., Takakura, F., Kojima, E., et al. (1999) Screening of blood donors for human parvovirus B19 and characterization of the results. Vox Sang, 76, 14–21.CrossRefGoogle ScholarPubMed
Weiland, H. T., Vermey-Keers, C., Salimans, M. M., et al. (1987) Parvovirus B19 associated with fetal abnormality (letter). Lancet, i, 682–3.CrossRefGoogle Scholar
White, D. G., Woolf, A. D., Mortimer, P. P., et al. (1985) Human parvovirus arthropathy. Lancet, i, 419–21.CrossRefGoogle ScholarPubMed
Woolf, A. D. (1990) Human parvovirus B19 and arthritis. Behring Inst Mitt, 64–8.Google ScholarPubMed
Wu, C. G., Mason, B., Jong, J., et al. (2005) Parvovirus B19 transmission by a high-purity factor VIII concentrate. Transfusion, 45, 1003–10.CrossRefGoogle ScholarPubMed
Yaegashi, N., Shiraishi, H., Takeshita, T., et al. (1989) Propagation of human parvovirus B19 in primary culture of erythroid lineage cells derived from fetal liver. J Virol, 63, 2422–26.Google ScholarPubMed
Yoto, Y., Kudoh, T., Haseyama, K., et al. (1995) Incidence of human parvovirus B19 DNA detection in blood donors. Br J Haematol, 91, 1017–18.CrossRefGoogle ScholarPubMed
Young, N. (1988) Hematologic and hematopoietic consequences of B19 parvovirus infection. Semin Hematol, 25, 159–72.Google ScholarPubMed
Young, N. S. and Brown, K. E. (2004) Parvovirus B19. N Eng J Med, 350, 586–97.CrossRefGoogle ScholarPubMed
Yunoki, M., Tsujikawa, M., Urayama, T., et al. (2003) Heat sensitivity of human parvovirus B19. Vox Sang, 85(1), 67–8.CrossRefGoogle Scholar
Zadori, Z., Szelei, J., Lacoste, M. C., et al. (2001) A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell, 1, 291–302.CrossRefGoogle ScholarPubMed
Zanella, A., Rossi, F., Cesana, C., et al. (1995) Transfusion-transmitted human parvovirus B19 infection in a thalassemic patient. Transfusion, 35, 769–72.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×