Published online by Cambridge University Press: 05 May 2015
Typically how many colours are required to colour a graph? In other words, given a graph chosen randomly, what can we expect its chromatic number to be? We survey the classic interpretation of this question, with the binomial or Erdős–Rényi random graph and the usual chromatic number. We also treat a few variations, not only of the random graph model, but also of the chromatic parameter.
Introduction
How many colours are typically necessary to colour a graph?
We survey a number of perspectives on this natural question, which is central to random graph theory and to probabilistic and extremal combinatorics. It has stimulated a vibrant area of research, with a rich history extending back through more than half a century.
Erdős and Rényi [36] asked a form of this question in a celebrated early paper on random graphs in 1960. Let Gn,m be a graph chosen uniformly at random from the set of graphs with vertex-set [n] = {1, 2, …, n} and m edges. In this probabilistic model, we cannot rule out the possibility that Gn,m is, for example, the disjoint union of one large clique and some isolated vertices, or perhaps one Turán graph (a balanced complete multipartite graph) and some isolated vertices. The resulting range is large: in the former situation the chromatic number could be about, while in the latter it could be 2 if m ≤ n2/4. These outcomes are unlikely, however, and we are interested in the most probable ones. To state the question properly, we say that an event An (which here always describes a property of a random graph on the vertex-set [n]) holds asymptotically almost surely (a.a.s.) if the probability that An holds satisfies ℙ(An) → 1 as n → ∞. Erdős and Rényi asked the following question.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.