Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T04:12:39.441Z Has data issue: false hasContentIssue false

12 - Titan's magnetospheric and plasma environment

Published online by Cambridge University Press:  05 January 2014

J.-E. Wahlund
Affiliation:
Swedish Institute of Space Physics
R. Modolo
Affiliation:
Université de Versailles Saint-Quentin
C. Bertucci
Affiliation:
Institute for Astronomy and Space Physics
A. J. Coates
Affiliation:
University College London
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

12.1 Introduction

Titan, Mars, and Venus are three largely unmagnetized planetary bodies with dense atmospheres that are immersed in external and highly dynamic magnetized plasma flows. Mars and Venus interact with the solar wind, whereas Titan usually interacts with the rotating magnetosphere of Saturn, and only occasionally is subject to shocked solar wind during brief excursions into Saturn's magnetosheath (Figure 12.1). Titan's atmosphere is ionized by the energetic plasma flow, together with solar and cosmic ray radiation (see Chapter 11), and the resulting ionosphere provide a conductive environment with which the external plasma flow interacts. The ability of the ionosphere to carry an electrical current plays an important role in the dynamics and energetics of the ionosphere, and through collisions, to the deposition of energy and momentum into the neutral atmosphere. This magnetosphere/ionosphere interaction at Titan involves the formation of an induced magnetosphere around Titan with interaction boundaries that drapes the magnetic field lines into a long tail behind the moon, already detected by the instruments of the Voyager 1 spacecraft (e.g., Ness et al., 1982; Gurnett et al., 1982) during its swift fly-by of Titan's plasma wake. The interaction causes ionospheric convection and facilitates the escape of ionospheric plasma through the tail to the surrounding streaming magnetosphere past Titan. In addition, Titan's vast neutral gas environment becomes partly ionized; the created ions are picked up by the induced convection electric field by the streaming magnetospheric plasma and drift away in a gyrating motion, at the same time mass loading the streaming plasma so it slows down in the neighborhood of the moon.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 419 - 458
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, K., Wahlund, J.-E., Modolo, R., Lummerzheim, D., et al. 2007. On Magnetospheric Electron Impact Ionisation and Dynamics in Titan's Ram-Side and Polar Ionosphere – a Cassini Case Study. Annales Geophysicae, 25(Nov.), 2359–2369. doi:10.5194/angeo-25-2359-2007.Google Scholar
Ågren, K., Wahlund, J.-E., Garnier, P., Modolo, R., et al. 2009. On the Ionospheric Structure of Titan. Planet. Space Sci., 57(Dec.), 1821–1827. doi:10.1016/j.pss.2009.04.012.Google Scholar
Ågren, K., Andrews, D. J., Buchert, S. C., Coates, A. J., et al. 2011. Detection of Currents and Associated Electric Fields in Titan's Ionosphere from Cassini Data. J. Geophys. Res. (Space Physics), 116(A15), 4313. doi:10.1029/2010JA016100.Google Scholar
Alfvén, H. 1950. Cosmical Electrodynamics. Clarendon Press, Oxford.
Alfvén, H. 1957. On the Theory of Comet Tails. Tellus, 9, 92.Google Scholar
Alfvén, H., and Fälthammar, C. G. 1963. Cosmical Electrodynamics; Fundamental Principles. Clarendon Press, Oxford.
André, M., Norqvist, P., Andersson, L., Eliasson, L., et al. 1998. Ion Energization Mechanisms at 1700 km in the Auroral Region. J. Geophys. Res., 103(Mar.), 4199–4222. doi:10.1029/97JA00855.Google Scholar
Andrews, D. J., Coates, A. J., Cowley, S. W. H., Dougherty, M. K., et al. 2010. Magnetospheric Period Oscillations at Saturn: Comparison of Equatorial and High-Latitude Magnetic Field Periods with North and South Saturn Kilometric Radiation Periods. J. Geophys. Res. (Space Physics), 115(A14), 12252. doi:10.1029/2010JA015666.Google Scholar
Arridge, C. S. 2012. A Statistical Analysis of Plasma Parameters near Titan's Orbit. J. Geophys. Res.Google Scholar
Arridge, C. S., Khurana, K. K., Russell, C. T., Southwood, D. J., et al. 2008. Warping of Saturn's Magnetospheric and Magnetotail Current Sheets. J. Geophys. Res. (Space Physics), 113(A12), 8217. doi:10.1029/2007JA012963.Google Scholar
Arridge, C. S., Achilleos, N., and Guio, P. 2011a. Electric Field Variability and Classifications of Titan's Magnetoplasma Environment. Annales Geophysicae, 29(July), 1253–1258. doi:10.5194/angeo-29-1253-2011.Google Scholar
Arridge, C. S., Andre, N., McAndrews, H. J., Bunce, E. J., et al. 2011b. Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations. Space Sci. Rev., 164(Dec.), 1–83. doi:10.1007/s11214-011-9850-4.Google Scholar
Arridge, C. S., Andre, N., Bertucci, C. L., Garnier, P., et al. 2011c. Upstream of Saturn and Titan. Space Sci. Rev., 162(Dec.), 25–83. doi:10.1007/s11214-011-9849-x.Google Scholar
Backes, H., Neubauer, F. M., Dougherty, M. K., Achilleos, N., et al. 2005. Titan's Magnetic Field Signature During the First Cassini Encounter. Science, 308(May), 992–995. doi:10.1126/science.1109763.Google Scholar
Barabash, S., Fedorov, A., Sauvaud, J. J., Lundin, R., et al. 2007. The Loss of Ions from Venus through the Plasma Wake. Nature, 450(Nov.), 650–653. doi:10.1038/nature06434.Google Scholar
Béghin, C., Canu, P., Karkoschka, E., Sotin, C., et al. 2009. New Insights on Titan's Plasma-Driven Schumann Resonance Inferred from Huygens and Cassini Data. Planet. Space Sci., 57(Dec.), 1872–1888. doi:10.1016/j.pss.2009.04.006.Google Scholar
Bertucci, C., Neubauer, F. M., Szego, K., Wahlund, J.-E., et al. 2007. Structure of Titan's Mid-Range Magnetic Tail: Cassini Magnetometer Observations during the T9 Flyby. Geophys. Res. Lett., 34(Nov.), 24. doi:10.1029/2007GL030865.Google Scholar
Bertucci, C., Achilleos, N., Dougherty, M. K., Modolo, R., et al. 2008. The Magnetic Memory of Titan's Ionized Atmosphere. Science, 321(Sept.), 1475-. doi:10.1126/science.1159780.Google Scholar
Bertucci, C., Sinclair, B., Achilleos, N., Hunt, P., et al. 2009. The Variability of Titan's Magnetic Environment. Planet. Space Sci., 57(Dec.), 1813–1820. doi:10.1016/j.pss.2009.02.009.Google Scholar
Bertucci, C., Duru, F., Edberg, N., Fraenz, M., et al. 2011. The Induced Magnetospheres of Mars, Venus, and Titan. Space Sci. Rev., 162(Dec.), 113–171. doi:10.1007/s11214-011-9845-1.Google Scholar
Bird, M. K., Dutta-Roy, R., Asmar, S. W., and Rebold, T. A. 1997. Detection of Titan's Ionosphere from Voyager 1 Radio Occultation Observations. Icarus, 130(Dec.), 426–436. doi:10.1006/icar.1997.5831.Google Scholar
Birdsall, C. K., and Langdon, A. B. 2005. Plasma Physics via Computer Simulation. Taylor and Francis, New York.
Blanc, M., Bolton, S., Bradley, J., Burton, M., et al. 2002. Magnetospheric and Plasma Science with Cassini-Huygens. Space Sci. Rev., 104(July), 253–346. doi:10.1023/A:1023605110711.Google Scholar
Borovsky, J. E., and Denton, M. H. 2008. A Statistical Look at Plasmaspheric Drainage Plumes. J. Geophys. Res. (Space Physics), 113(A12), 9221. doi:10.1029/2007JA012994.Google Scholar
Boström, R. 1964. A Model of the Auroral Electrojects. J. Geophys. Res., 69(Dec.), 4983–4999. doi:10.1029/JZ069i023p04983.Google Scholar
Boström, R., and Wahlund, J.-E. 2004. Titan far svenskt besök, Forskning och Framsteg, Issue 5, 16–21.Google Scholar
Brace, L. H., and Kliore, A. J. 1991. The Structure of the Venus Ionosphere. Space Sci. Rev., 55(Feb.), 81–163. doi:10.1007/BF00177136.Google Scholar
Brain, D. A., Baker, A. H., Briggs, J., Eastwood, J. P., et al. 2010. Episodic Detachment of Martian Crustal Magnetic Fields Leading to Bulk Atmospheric Plasma Escape. Geophys. Res. Lett., 37(July), 14108. doi:10.1029/2010GL043916.Google Scholar
Brannon, J. F., Fox, J. L., and Porter, H. S. 1993. Evidence for Day-to-Night Ion Transport at Low Solar Activity in the Venus Pre-Dawn Ionosphere. Geophys. Res. Lett., 20(Dec.), 2739–2742. doi:10.1029/93GL02422.Google Scholar
Brecht, S. H., Luhmann, J. G., and Larson, D. J. 2000. Simulation of the Saturnian Magnetospheric Interaction with Titan. J. Geophys. Res., 105(June), 13119–13130. doi:10.1029/1999JA900490.Google Scholar
Chaston, C. C., Hull, A. J., Bonnell, J. W., Carlson, C. W., et al. 2007. Large Parallel Electric Fields, Currents, and Density Cavities in Dispersive Alfvén Waves Above the Aurora. J. Geophys. Res. (Space Physics), 112(A11), 5215. doi:10.1029/2006JA012007.Google Scholar
Coates, A. J. 2009. Interaction of Titan's Ionosphere with Saturn's Magnetosphere. Royal Society of London Philosophical Transactions Series A, 367(Feb.), 773–788. doi:10.1098/rsta.2008.0248.Google Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., et al. 2007a. Discovery of Heavy Negative Ions in Titan's Ionosphere. Geophys. Res. Lett., 34(Nov.), 22103. doi:10.1029/2007GL030978.Google Scholar
Coates, A. J., Crary, F. J., Young, D. T., Szego, K., et al. 2007b. Ionospheric Electrons in Titan's Tail: Plasma Structure during the Cassini T9 Encounter. Geophys. Res. Lett., 34(Oct.), 24. doi:10.1029/2007GL030919.Google Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., et al. 2009. Heavy Negative Ions in Titan's Ionosphere: Altitude and Latitude Dependence. Planet. Space Sci., 57(Dec.), 1866–1871. doi:10.1016/j.pss.2009.05.009.Google Scholar
Coates, A. J., Wahlund, J.-E., Ågren, K., Edberg, N., et al. 2011. Recent Results from Titan's Ionosphere. Space Sci. Rev., 162(Dec.), 85–111. doi:10.1007/s11214-011-9826-4.Google Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., Arridge, C. S., et al. 2012. Cassini in Titan's Tail: CAPS Observations of Plasma Escape. J. Geophys. Res., 117, A05324, doi:10.1029/2012JA017595.Google Scholar
Cowee, M. M., Gary, S. P., Wei, H. Y., Tokar, R. L., etal. 2010. An Explanation for the Lack of Ion Cyclotron Wave Generation by Pickup Ions at Titan: 1-D Hybrid Simulation Results. J. Geophys. Res. (Space Physics), 115(A14), 10224. doi:10.1029/2010JA015769.Google Scholar
Crary, F. J., Magee, B. A., Mandt, K., Waite, J. H., et al. 2009. Heavy Ions, Temperatures and Winds in Titan's Ionosphere: Combined Cassini CAPS and INMS Observations. Planet. Space Sci., 57(Dec.), 1847–1856. doi:10.1016/j.pss.2009.09.006.Google Scholar
Cravens, T. E., Crawford, S. L., Nagy, A. F., and Gombosi, T. I. 1983. A Two-Dimensional Model of the Ionosphere of Venus. J. Geophys. Res., 88(July), 5595–5606. doi:10.1029/JA088iA07p05595.Google Scholar
Cravens, T. E., Robertson, I. P., Clark, J., Wahlund, J.-E., et al. 2005. Titan's Ionosphere: Model Comparisons with Cassini TA Data. Geophys. Res. Lett., 32(June), 12108. doi:10.1029/2005GL023249.Google Scholar
Cravens, T. E., Yelle, R. V., Wahlund, J.-E., Shemansky, D. E., et al. 2009. Composition and Structure of the Ionosphere and Thermosphere. Pages 259–295 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-4.
Cravens, T. E., Richard, M., Ma, Y.-J., Bertucci, C., et al. 2010. Dynamical and Magnetic Field Time Constants for Titan's Ionosphere: Empirical Estimates and Comparisons with Venus. J. Geophys. Res. (Space Physics), 115(A14), 8319. doi:10.1029/2009JA015050.Google Scholar
Crider, D., Cloutier, P., Law, C., Walker, P., et al. 2000. Evidence of Electron Impact Ionization in the Magnetic Pileup Boundary of Mars. Geophys. Res. Lett., 27, 45–48. doi:10.1029/1999GL003625.Google Scholar
Cui, J., Yelle, R. V, and Volk, K. 2008. Distribution and Escape of Molecular Hydrogen in Titan's Thermosphere and Exosphere. J. Geophys. Res. (Planets), 113(E12), 10004. doi:10.1029/2007JE003032.Google Scholar
Cui, J., Galand, M., Yelle, R. V, Vuitton, V, et al. 2009. Diurnal Variations of Titan's Ionosphere. J. Geophys. Res. (Space Physics), 114(A13), 6310. doi:10.1029/2009JA014228.Google Scholar
Cui, J., Galand, M., Yelle, R. V, Wahlund, J.-E., et al. 2010. Ion Transport in Titan's Upper Atmosphere. J. Geophys. Res. (Space Physics), 115(A14), 6314. doi:10.1029/2009JA014563.Google Scholar
Dandouras, I., Garnier, P., Mitchell, D. G., Roelof, E. C., et al. 2009. Titan's Exosphere and Its Interaction with Saturn's Magnetosphere. Royal Society of London Philosophical Transactions Series A, 367(Feb.), 743–752. doi:10.1098/rsta.2008.0249.Google Scholar
Dóbé, Z., and Szegö, K. 2005. Wave Activity above the Ionosphere of Titan: Predictions for the Cassini Mission. J. Geophys. Res. (Space Physics), 110(A9), 3224. doi:10.1029/2004JA010548.Google Scholar
Dubinin, E., Franz, M., Woch, J., Roussos, E., et al. 2006. Plasma Morphology at Mars. Aspera-3 Observations. Space Sci. Rev., 126(Oct.), 209–238. doi:10.1007/s11214-006-9039-4.Google Scholar
Dubinin, E., Chanteur, G., Fraenz, M., and Woch, J. 2008a. Field-Aligned Currents and Parallel Electric Field Potential Drops at Mars. Scaling from the Earth's Aurora. Planet. Space Sci., 56(May), 868–872. doi:10.1016/j.pss.2007.01.019.Google Scholar
Dubinin, E., Modolo, R., Fraenz, M., Woch, J., etal. 2008b. Plasma Environment of Mars as Observed by Simultaneous MEX-ASPERA-3 and MEX-MARSIS Observations. J. Geophys. Res. (Space Physics), 113(A12), 10217. doi:10.1029/2008JA013355.Google Scholar
Dubinin, E., Fraenz, M., Fedorov, A., Lundin, R., et al. 2011. Ion Energization and Escape on Mars and Venus. Space Sci. Rev., 162(Dec.), 173–211. doi:10.1007/s11214-011-9831-7.Google Scholar
Edberg, N. J. T., Wahlund, J.-E., Ågren, K., Morooka, M. W., et al. 2010. Electron Density and Temperature Measurements in the Cold Plasma Environment of Titan: Implications for Atmospheric Escape. Geophys. Res. Lett., 37(Oct.), 20105. doi:10.1029/2010GL044544.Google Scholar
Edberg, N. J. T., Ågren, K., Wahlund, J.-E., Morooka, M. W., et al. 2011. Structured Ionospheric Outflow during the Cassini T55-T59 Titan Flybys. Planet. Space Sci., 59(June), 788–797. doi:10.1016/j.pss.2011.03.007.Google Scholar
Engwall, E., Eriksson, A. I., Cully, C. M., Andre, M., et al. 2008. Earth's Ionospheric Outflow Dominated by Hidden Cold Plasma. Nature Geoscience. doi:10.1038/ngeo387.
Ergun, R. E., Su, Y.-J., Andersson, L., Bagenal, F., et al. 2006. S Bursts and the Jupiter Ionospheric Alfvén Resonator. J. Geophys. Res. (Space Physics), 111(A10), 6212. doi:10.1029/2005JA011253.Google Scholar
Garnier, P., Dandouras, I., Toublanc, D., Brandt, P. C., et al. 2007. The Exosphere of Titan and Its Interaction with the Kronian Magnetosphere: MIMI Observations and Modeling. Planet. Space Sci., 55(Jan.), 165–173. doi:10.1016/j.pss.2006.07.006.Google Scholar
Garnier, P., Dandouras, I., Toublanc, D., Roelof, E. C., et al. 2008. The Lower Exosphere of Titan: Energetic Neutral Atoms Absorption and Imaging. J. Geophys. Res. (Space Physics), 113(A12), 10216. doi:10.1029/2008JA013029.Google Scholar
Garnier, P., Dandouras, I., Toublanc, D., Roelof, E. C., et al. 2010. Statistical Analysis of the Energetic Ion and ENA Data for the Titan Environment. Planet. Space Sci., 58(Dec.), 1811–1822. doi:10.1016/j.pss.2010.08.009.Google Scholar
Gurnett, D. A., Scarf, F. L., and Kurth, W. S. 1982. The Structure of Titan's Wake from Plasma Wave Observations. J. Geophys. Res., 87(Mar.), 1395–1403. doi:10.1029/JA087iA03p01395.Google Scholar
Gurnett, D. A., Persoon, A. M., Kurth, W. S., Groene, J. B., et al. 2007. The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk. Science, 316(Apr.), 442-. doi:10.1126/science.1138562.Google Scholar
Gurnett, D. A., Persoon, A. M., Groene, J. B., Kurth, W. S., et al. 2011. The Rotation of the Plasmapause-Like Boundary at High Latitudes in Saturn's Magnetosphere and Its Relation to the Eccentric Rotation of the Northern and Southern Auroral Ovals. Geophys. Res. Lett., 38(Nov.), 21203. doi:10.1029/2011GL049547.Google Scholar
Hartle, R. E., Sittler, E. C., Ogilvie, K. W., Scudder, J. D., et al. 1982. Titan's Ion Exosphere Observed from Voyager 1. J. Geophys. Res., 87(Mar.), 1383–1394. doi:10.1029/JA087iA03p01383.Google Scholar
Hartle, R. E., Sittler, E. C., Neubauer, F. M., Johnson, R. E., etal. 2006. Initial Interpretation of Titan Plasma Interaction as Observed by the Cassini Plasma Spectrometer: Comparisons with Voyager 1. Planet. Space Sci., 54(Oct.), 1211–1224. doi:10.1016/j.pss.2006.05.029.Google Scholar
Johnson, R. E., Combi, M. R., Fox, J. L., Ip, W.-H., et al. 2008. Exospheres and Atmospheric Escape. Space Sci. Rev., 139(Aug.), 355–397. doi:10.1007/s11214-008-9415-3.Google Scholar
Johnson, R. E., Tucker, O. J., Michael, M., Sittler, E. C., et al. 2009. Mass Loss Processes in Titan's Upper Atmosphere. Pages 373–392 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978- 1-4020-9215-2_5.
Kabin, K., Gombosi, T. I., De Zeeuw, D. L., Powell, K. G., et al. 1999. Interaction of the Saturnian Magnetosphere with Titan: Results of a Three-Dimensional MHD Simulation. J. Geophys. Res., 104(Feb.), 2451–2458. doi:10.1029/1998JA900080.Google Scholar
Kallio, E., Sillanpää, I., and Janhunen, P. 2004. Titan in Subsonic and Supersonic Flow. Geophys. Res. Lett., 31(Aug.), 15703. doi:10.1029/2004GL020344.Google Scholar
Kallio, E., Sillanpää, I., Jarvinen, R., Janhunen, P., et al. 2007. Morphology of the Magnetic Field near Titan: Hybrid Model Study of the Cassini T9 Flyby. Geophys. Res. Lett., 34(Oct.), 24. doi:10.1029/2007GL030827.Google Scholar
Kallio, E., Chaufray, J.-Y., Modolo, R., Snowden, D., et al. 2011. Modeling of Venus, Mars, and Titan. Space Sci. Rev., 162(Dec.), 267–307. doi:10.1007/s11214-011-9814-8.Google Scholar
Kasting, J. F. 1988. Runaway and Moist Green house Atmospheres and the Evolution of Earth and Venus. Icarus, 74(June), 472–494. doi:10.1016/0019-1035(88)90116-9.Google Scholar
Keller, C. N., and Cravens, T. E. 1994. One-Dimensional Multispecies Hydrodynamic Models of the Wakeside Ionosphere of Titan. J. Geophys. Res., 99(Apr.), 6527–6536. doi:10.1029/93JA02681.CrossRefGoogle Scholar
Keller, C. N., Cravens, T. E., and Gan, L. 1994. One-Dimensional Multispecies Magnetohydrodynamic Models of the Ramside Ionosphere of Titan. J. Geophys. Res., 99(Apr.), 6511–6525. doi:10.1029/93JA02680.Google Scholar
Kelley, M. C. 1989. Earth's Ionosphere: Plasma Physics and Electrodynamics. Academic Press, San Diego. ISBN: 978-0-12-088425-4.
Khurana, K. K., Mitchell, D. G., Arridge, C. S., Dougherty, M. K., et al. 2009. Sources of Rotational Signals in Saturn's Magnetosphere. J. Geophys. Res. (Space Physics), 114(A13), 2211. doi:10.1029/2008JA013312.Google Scholar
Kliore, A. J., Nagy, A. F., Marouf, E. A., French, R. G., et al. 2008. First Results from the Cassini Radio Occultations of the Titan Ionosphere. J. Geophys. Res. (Space Physics), 113(A12), 9317. doi:10.1029/2007JA012965.Google Scholar
Knudsen, D. J., Clemmons, J. H., and Wahlund, J.-E. 1998. Correlation between Core Ion Energization, Suprathermal Electron Bursts, and Broadband ELF Plasma Waves. J. Geophys. Res., 103(Mar.), 4171–4186. doi:10.1029/97JA00696.Google Scholar
Ledvina, S. A., and Cravens, T. E. 1998. A Three-Dimensional MHD Model of Plasma Flow Around Titan. Planet. Space Sci., 46(Oct.), 1175–1191. doi:10.1016/S0032-0633(98)00052-X.Google Scholar
Ledvina, S. A., Cravens, T. E., and Kecskemety, K. 2005. Ion Distributions in Saturn's Magnetosphere near Titan. J. Geophys. Res. (Space Physics), 110(A9), 6211. doi:10.1029/2004JA010771.CrossRefGoogle Scholar
Ledvina, S. A., Ma, Y.-J., and Kallio, E. 2008. Modeling and Simulating Flowing Plasmas and Related Phenomena. Space Sci. Rev., 139(Aug.), 143–189. doi:10.1007/s11214-008-9384-6.Google Scholar
Ledvina, S. A., Brecht, S. H., and Cravens, T. E. 2012. The Orientation of Titan's Dayside Ionosphere and Its Effects on Titan's Plasma Interaction. Earth Planets Space, 64, 231–236.Google Scholar
Lemaire, J. 1972. Effect of Escaping Photoelectrons ina Polar Exospheric Model. Space Research XII, 1413–1416.Google Scholar
Lipatov, A. S. 2002. The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas. Springer.
Lipatov, A. S., Sittler, E. C., Hartle, R. E., Cooper, J. F., et al. 2011. Background and Pickup Ion Velocity Distribution Dynamics in Titan's Plasma Environment: 3D Hybrid Simulation and Comparison with CAPS T9 Observations. Adv. Space Res., 48(Sept.), 1114–1125. doi:10.1016/j.asr.2011.05.026.CrossRefGoogle Scholar
López-Moreno, J. J., Molina-Cuberos, G. J., Hamelin, M., Grard, R., et al. 2008. Structure of Titan's Low Altitude Ionized Layer from the Relaxation Probe Onboard HUYGENS. Geophys. Res. Lett., 35(Nov.), 22104. doi:10.1029/2008GL035338.Google Scholar
Louarn, P., Wahlund, J. E., Chust, T., de Feraudy, H., etal. 1994. Observation of Kinetic Alfvén Waves by the FREJA Spacecraft. Geophys. Res. Lett., 21, 1847–1850. doi:10.1029/94GL00882.Google Scholar
Luhmann, J. G. 1986. The Solar Wind Interaction with Venus. Space Sci. Rev., 44(Sept.), 241–306. doi:10.1007/BF00200818.Google Scholar
Luhmann, J. G., Kasprzak, W. T., and Russell, C. T. 2007. Space Weather at Venus and Its Potential Consequences for Atmosphere Evolution. J. Geophys. Res. (Planets), 112(E11), 4. doi:10.1029/2006JE002820.Google Scholar
Luhmann, J. G., Fedorov, A., Barabash, S., Carlsson, E., et al. 2008. Venus Express Observations of Atmospheric Oxygen Escape during the Passage of Several Coronal Mass Ejections. J. Geophys. Res. (Planets), 113(E12), 0. doi:10.1029/2008JE003092.Google Scholar
Lundin, R. 2011. Ion Acceleration and Outflow from Mars and Venus: An Overview. Space Sci. Rev., 162(Dec.), 309–334. doi:10.1007/s11214-011-9811-y.Google Scholar
Lundin, R., and Dubinin, E. M. 1992. Phobos-2 Results on the Ionospheric Plasma Escape from Mars. Adv. Space Res., 12(Sept.), 255–263. doi:10.1016/0273-1177(92)90338-X.Google Scholar
Lundin, R., and Hultqvist, B. 1989. Ionospheric Plasma Escape by High-Altitude Electric Fields – Magnetic Moment “Pumping.”J. Geophys. Res., 94(June), 6665–6680. doi:10.1029/JA094iA06p06665.Google Scholar
Lundin, R., Borg, H., Hultqvist, B., Zakharov, A., et al. 1989. First Measurements of the Ionospheric Plasma Escape from Mars. Nature, 341(Oct.), 609–612. doi:10.1038/341609a0.Google Scholar
Lundin, R., Barabash, S., Andersson, H., Holmström, M., et al. 2004. Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express. Science, 305(Sept.), 1933–1936. doi:10.1126/science.1101860.Google Scholar
Ma, Y., Nagy, A. F., Cravens, T. E., Sokolov, I. V, et al. 2006. Comparisons between MHD Model Calculations and Observations of Cassini Flybys of Titan. J. Geophys. Res. (Space Physics), 111(A10), 5207. doi:10.1029/2005JA011481.CrossRefGoogle Scholar
Ma, Y.-J., Nagy, A. F., Cravens, T. E., Sokolov, I. V., et al. 2004. 3-D Global MHD Model Prediction for the First Close Flyby of Titan by Cassini. Geophys. Res. Lett., 31(Nov.), 22803. doi:10.1029/2004GL021215.Google Scholar
Ma, Y.-J., Nagy, A. F., Toth, G., Cravens, T. E., et al. 2007. 3D Global Multi-Species Hall-MHD Simulation of the Cassini T9 Flyby. Geophys. Res. Lett., 34(Dec.), 24. doi:10.1029/2007GL031627.CrossRefGoogle Scholar
Ma, Y.-J., Altwegg, K., Breus, T., Combi, M. R., et al. 2008. Plasma Flow and Related Phenomena in Planetary Aeronomy. Space Sci. Rev., 139(Aug.), 311–353. doi:10.1007/s11214-008-9389-1.Google Scholar
Ma, Y.-J., Russell, C. T., Nagy, A. F., Toth, G., et al. 2009. Time-Dependent Global MHD Simulations of Cassini T32 Flyby: From Magnetosphere to Magnetosheath. J. Geophys. Res. (Space Physics), 114(A13), 3204. doi:10.1029/2008JA013676.Google Scholar
Mallinckrodt, A. J., and Carlson, C. W. 1978. Relations between Transverse Electric Fields and Field-Aligned Currents. J. Geophys. Res., 83(Apr.), 1426–1432. doi:10.1029/JA083iA04p01426.Google Scholar
McAndrews, H. J., Thomsen, M. F., Arridge, C. S., Jackman, C. M., et al. 2009. Plasma in Saturn's Nightside Magnetosphere and the Implications for Global Circulation. Planet. Space Sci., 57(Dec.), 1714–1722. doi:10.1016/j.pss.2009.03.003.Google Scholar
McEnulty, T. R., Luhmann, J. G., de Pater, I., Brain, D. A., et al. 2010. Interplanetary Coronal Mass Ejection Influence on High Energy Pick-Up Ions at Venus. Planet. Space Sci., 58(Dec.), 1784–1791. doi:10.1016/j.pss.2010.07.019.Google Scholar
Menietti, J. D., Groene, J. B., Averkamp, T. F., Hospodarsky, G. B., et al. 2007. Influence of Saturnian Moons on Saturn Kilometric Radiation. J. Geophys. Res. (Space Physics), 112(A11), 8211. doi:10.1029/2007JA012331.Google Scholar
Menietti, J. D., Ye, S.-Y., Piker, C. W., and Cecconi, B. 2010. The Influence of Titan on Saturn Kilometric Radiation. Annales Geophysicae, 28(Feb.), 395–406. doi:10.5194/angeo-28-395-2010.Google Scholar
Mitchell, D. G., Brandt, P. C., Roelof, E. C., Dandouras, J., et al. 2005. Energetic Ion Acceleration in Saturn's Magnetotail: Substorms at Saturn?Geophys. Res. Lett., 32(June), 20. doi:10.1029/2005GL022647.Google Scholar
Modolo, R., and Chanteur, G. M. 2008. A Global Hybrid Model for Titan's Interaction with the Kronian Plasma: Application to the Cassini TA Flyby. J. Geophys. Res. (Space Physics), 113(A12), 1317. doi:10.1029/2007JA012453.Google Scholar
Modolo, R., Wahlund, J.-E., Boström, R., Canu, P., et al. 2007a. Far Plasma Wake of Titan from the RPWS Observations: A Case Study. Geophys. Res. Lett., 34(Oct.), 24. doi:10.1029/2007GL030482.Google Scholar
Modolo, R., Chanteur, G. M., Wahlund, J.-E., Canu, P., et al. 2007b. Plasma Environment in the Wake of Titan from Hybrid Simulation: A Case Study. Geophys. Res. Lett., 34(Oct.), 24. doi:10.1029/2007GL030489.Google Scholar
Moore, T. E., and Horwitz, J. L. 2007. Stellar Ablation of Planetary Atmospheres. Rev. Geophys., 45(Aug.), 3002. doi:10.1029/2005RG000194.Google Scholar
Morooka, M. W., Modolo, R., Wahlund, J.-E., Andre, M., et al. 2009. The Electron Density of Saturn's Magnetosphere. Annales Geophysicae, 27(July), 2971–2991. doi:10.5194/angeo-27-2971-2009.Google Scholar
Müller, J., Simon, S., Motschmann, U., Glassmeier, K.-H., et al. 2010. Magnetic Field Fossilization and Tail Reconfiguration in Titan's Plasma Environment during a Magnetopause Passage: 3D Adaptive Hybrid Code Simulations. Planet. Space Sci., 58(Oct.), 1526–1546. doi:10.1016/j.pss.2010.07.018.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Cui, J., and Waite, J. H. 2008. Horizontal Structures and Dynamics of Titan's Thermosphere. J. Geophys. Res. (Planets), 113(E12), 10005. doi:10.1029/2007JE003033.Google Scholar
Nagy, A. F., Liu, Y., Hansen, K. C., Kabin, K., et al. 2001. The Interaction between the Magnetosphere of Saturn and Titan's Ionosphere. J. Geophys. Res., 106(Apr.), 6151–6160. doi:10.1029/2000JA000183.Google Scholar
Németh, Z., Szegö, K., Bebesi, Z., Erdos, G., et al. 2011. Ion Distributions of Different Kronian Plasma Regions. J. Geophys. Res. (Space Physics), 116(A15), 9212. doi:10.1029/2011JA016585.Google Scholar
Ness, N. F., Acuna, M. H., and Behannon, K. W. 1982. The Induced Magnetosphere of Titan. J. Geophys. Res., 87(Mar.), 1369–1381. doi:10.1029/JA087iA03p01369.Google Scholar
Neubauer, F. M., Gurnett, D. A., Scudder, J. D., and Hartle, R. E. 1984. Titan's Magnetospheric Interaction. Pages 760–787 of Gehrels, T. and Matthews, M. S. (eds.), Saturn. University of Arizona Press, Tucson.
Neubauer, F. M., Backes, H., Dougherty, M. K., Wennmacher, A., et al. 2006. Titan's Near Magnetotail from Magnetic Field and Electron Plasma Observations and Modeling: Cassini Flybys TA, TB, and T3. J. Geophys. Res. (Space Physics), 111(A10), 10220. doi:10.1029/2006JA011676.Google Scholar
Ong, M., Luhmann, J. G., Russell, C. T., Strangeway, R. J., et al. 1991. Venus Ionospheric “Clouds” – Relationship to the Magnetosheath Field Geometry. J. Geophys. Res., 96(July), 11133. doi:10.1029/91JA01100.Google Scholar
Opgenoorth, H. J., Dhillon, R. S., Rosenqvist, L., Lester, M., et al. 2010. Day-Side Ionospheric Conductivities at Mars. Planet. Space Sci., 58(Aug.), 1139–1151. doi:10.1016/j.pss.2010.04.004.Google Scholar
Persoon, A. M., Gurnett, D. A., Kurth, W. S., Hospodarsky, G. B., etal. 2005. Equatorial Electron Density Measurements in Saturn's Inner Magnetosphere. Geophys. Res. Lett., 32(Dec.), 23105. doi:10.1029/2005GL024294.Google Scholar
Persoon, A. M., Gurnett, D. A., Santolik, O., Kurth, W. S., et al. 2009. A Diffusive Equilibrium Model for the Plasma Density in Saturn's Magnetosphere. J. Geophys. Res. (Space Physics), 114(A13), 4211. doi:10.1029/2008JA013912.Google Scholar
Raeder, J., Neubauer, F. M., Ness, N. F., and Burlaga, L. F. 1987. Macroscopic Perturbations of the IMF by p/ Halley as Seen by the Giotto Magnetometer. Astron. Astrophys., 187(Nov.), 61.Google Scholar
Richard, M. S., Cravens, T. E., Robertson, I. P., Waite, J. H., et al. 2011. Energetics of Titan's Ionosphere: Model Comparisons with Cassini Data. J. Geophys. Res. (Space Physics), 116(A15), 9310. doi:10.1029/2011JA016603.Google Scholar
Rishbeth, H., and Garriott, O. K. 1969. Introduction to Ionospheric Physics. Academic Press, New York.
Rosenqvist, L., Wahlund, J.-E., Ågren, K., Modolo, R., et al. 2009. Titan Ionospheric Conductivities from Cassini Measurements. Planet. Space Sci., 57(Dec.), 1828–1833. doi:10.1016/j.pss.2009.01.007.Google Scholar
Russell, C. T., Jackman, C. M., Wei, H. Y., et al. 2008. Titan's Influence on Saturnian Substorm Occurrence. Geophys. Res. Lett., 35(June), 12105. doi:10.1029/2008GL034080.Google Scholar
Rymer, A. M., Smith, H. T., Wellbrock, A., Coates, A. J., et al. 2009. Discrete Classification and Electron Energy Spectra of Titan's Varied Magnetospheric Environment. Geophys. Res. Lett., 36(Aug.), 15109. doi:10.1029/2009GL039427.Google Scholar
Saunders, M. A., and Russell, C. T. 1986. Average Dimension and Magnetic Structure of the Distant Venus Magnetotail. J. Geophys. Res., 91(May), 5589–5604. doi:10.1029/JA091iA05p05589.Google Scholar
Schunk, R. W., and Nagy, A. F. 2009. Ionospheres: Physics, Plasma Physics and Chemistry. Cambridge University Press, New York.
Sillanpää, I., Kallio, E., Janhunen, P., Schmidt, W., et al. 2006. Hybrid Simulation Study of Ion Escape at Titan for Different Orbital Positions. Adv. Space Res., 38, 799–805. doi:10.1016/j.asr.2006.01.005.Google Scholar
Sillanpää, I., Young, D. T., Crary, F., Thomsen, M., et al. 2011. Cassini Plasma Spectrometer and Hybrid Model Study on Titan's Interaction: Effect of Oxygen Ions. J. Geophys. Res. (Space Physics), 116(A15), 7223. doi:10.1029/2011JA016443.Google Scholar
Simon, S., and Motschmann, U. 2009. Titan's Induced Magnetosphere Under Non-Ideal Upstream Conditions: 3D Multi-Species Hybrid Simulations. Planet. Space Sci., 57(Dec.), 2001–2015. doi:10.1016/j.pss.2009.08.010.Google Scholar
Simon, S., Bößwetter, A., Bagdonat, T., Motschmann, U., et al. 2006. Plasma Environment of Titan: A 3-D Hybrid Simulation Study. Annales Geophysicae, 24(May), 1113–1135. doi:10.5194/angeo-24-1113-2006.Google Scholar
Simon, S., Kleindienst, G., Boesswetter, A., Bagdonat, T., et al. 2007. Hybrid Simulation of Titan's Magnetic Field Signature During the Cassini T9 Flyby. Geophys. Res. Lett., 34(Oct.), 24. doi:10.1029/2007GL029967.Google Scholar
Simon, S., Motschmann, U., Kleindienst, G., Saur, J., etal. 2009. Titan's Plasma Environment During a Magnetosheath Excursion: Real-Time Scenarios for Cassini's T32 Flyby from a Hybrid Simulation. Annales Geophysicae, 27(Feb.), 669–685. doi:10.5194/angeo-27-669-2009.Google Scholar
Simon, S., Wennmacher, A., Neubauer, F. M., Bertucci, C. L., et al. 2010a. Dynamics of Saturn's Magnetodisk near Titan's Orbit: Comparison of Cassini Magnetometer Observations from Real and Virtual Titan Flybys. Planet. Space Sci., 58(Oct.), 1625–1635. doi:10.1016/j.pss.2010.08.006.Google Scholar
Simon, S., Wennmacher, A., Neubauer, F. M., Bertucci, C. L., et al. 2010b. Titan's Highly Dynamic Magnetic Environment: A Systematic Survey of Cassini Magnetometer Observations from Flybys TA-T62. Planet. Space Sci., 58(Aug.), 1230–1251. doi:10.1016/j.pss.2010.04.021.Google Scholar
Sittler, E. C., Hartle, R. E., Viñas, A. F., Johnson, R. E., et al. 2005. Titan Interaction with Saturn's Magnetosphere: Voyager 1 Results Revisited. J. Geophys. Res. (Space Physics), 110(A9), 9302. doi:10.1029/2004JA010759.Google Scholar
Sittler, E. C., Hartle, R. E., Bertucci, C., Coates, A., et al. 2009. Energy Deposition Processes in Titan's Upper Atmosphere and Its Induced Magnetosphere. Pages 393–453 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-2_6.
Sittler, E. C., Hartle, R. E., Johnson, R. E., Cooper, J. F., et al. 2010. Saturn's Magnetospheric Interaction with Titan as Defined by Cassini Encounters T9 and T18: New Results. Planet. Space Sci., 58(Feb.), 327–350. doi:10.1016/j.pss.2009.09.017.Google Scholar
Snowden, D., Winglee, R., Bertucci, C., and Dougherty, M. 2007. Three-Dimensional Multifluid Simulation of the Plasma Interaction at Titan. J. Geophys. Res. (Space Physics), 112(A11), 12221. doi:10.1029/2007JA012393.Google Scholar
Snowden, D., Winglee, R., and Kidder, A. 2011a. Titan at the Edge: 1. Titan's Interaction with Saturn's Magnetosphere in the Prenoon Sector. J. Geophys. Res. (Space Physics), 116(A15), 8229. doi:10.1029/2011JA016435.Google Scholar
Snowden, D., Winglee, R., and Kidder, A. 2011b. Titan at the Edge: 2. A Global Simulation of Titan Exiting and Reentering Saturn's Magnetosphere at 13:16 Saturn Local Time. J. Geophys. Res. (Space Physics), 116(A15), 8230. doi:10.1029/2011JA016436.Google Scholar
Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., et al. 2000. Small Scale Alfvénic Structure in the Aurora. Space Sci. Rev., 92(May), 423–533.Google Scholar
Strangeway, R. J., Ergun, R. E., Su, Y.-J., Carlson, C. W., et al. 2005. Factors Controlling Ionospheric Outflows as Observed at Intermediate Altitudes. J. Geophys. Res. (Space Physics), 110(A9), 3221. doi:10.1029/2004JA010829.Google Scholar
Streltsov, A. V, and Lotko, W. 2004. Multiscale Electrodynamics of the Ionosphere-Magnetosphere System. J. Geophys. Res. (Space Physics), 109(A18), 9214. doi:10.1029/2004JA010457.Google Scholar
Szegö, K., Bebesi, Z., Bertucci, C., Coates, A. J., et al. 2007. Charged Particle Environment of Titan during the T9 Flyby. Geophys. Res. Lett., 34(Nov.), 24. doi:10.1029/2007GL030677.Google Scholar
Szegö, K., Németh, Z., Erdos, G., Foldy, L., et al. 2011. The Plasma Environment of Titan: The Magnetodisk of Saturn Near the Encounters as Derived from Ion Densities Measured by the Cassini/CAPS Plasma Spectrometer. J. Geophys. Res. (Space Physics), 116(A15), 10219. doi:10.1029/2011JA016629.Google Scholar
Tam, S. W. Y., Yasseen, F., Chang, T., and Ganguli, S. B. 1995. Self-Consistent Kinetic Photoelectron Effects on the Polar Wind. Geophys. Res. Lett., 22, 2107–2110. doi:10.1029/95GL01846.Google Scholar
Tanaka, T., and Murawski, K. 1997. Three-Dimensional MHD Simulation of the Solar Wind Interaction With the Ionosphere of Venus: Results of Two-Component Reacting Plasma Simulation. J. Geophys. Res., 102(Sept.), 19805–19822. doi:10.1029/97JA01474.Google Scholar
Thomsen, M. F., Reisenfeld, D. B., Delapp, D. M., Tokar, R. L., et al. 2010. Survey of Ion Plasma Parameters in Saturn's Magnetosphere. J. Geophys. Res. (Space Physics), 115(A14), 10220. doi:10.1029/2010JA015267.Google Scholar
Tseng, W.-L., Ip, W.-H., and Kopp, A. 2008. Exospheric Heating by Pickup Ions at Titan. Adv. Space Res., 42(July), 54–60. doi:10.1016/j.asr.2008.03.009.Google Scholar
Ulusen, D., Luhmann, J. G., Ma, Y.-J., Ledvina, S., et al. 2010. Investigation of the Force Balance in the Titan Ionosphere: Cassini T5 Flyby Model/Data Comparisons. Icarus, 210(Dec.), 867–880. doi:10.1016/j.icarus.2010.07.004.Google Scholar
Wahlund, J.-E., Opgenoorth, H. J., Haggstrom, I., Winser, K. J., et al. 1992. EISCAT Observations of Topside Ionospheric Ion Outflows During Auroral Activity -Revisited. J. Geophys. Res., 97(Mar.), 3019–3037. doi:10.1029/91JA02438.Google Scholar
Wahlund, J.-E., Louarn, P., Chust, T., de Feraudy, H., et al. 1994. On Ion Acoustic Turbulence and the Nonlinear Evolution of Kinetic Alfvén Waves in Aurora. Geophys. Res. Lett., 21, 1831–1834. doi:10.1029/94GL01289.Google Scholar
Wahlund, J.-E., Eriksson, A. I., Holback, B., Boehm, M. H., et al. 1998. Broadband ELF Plasma Emission during Auroral Energization 1. Slow Ion Acoustic Waves. J. Geophys. Res., 103(Mar.), 4343–4376. doi:10.1029/97JA02008.Google Scholar
Wahlund, J.-E., Boström, R., Gustafsson, G., Gurnett, D. A., et al. 2005. Cassini Measurements of Cold Plasma in the Ionosphere of Titan. Science, 308(May), 986–989. doi:10.1126/science.1109807.Google Scholar
Wahlund, J.-E., Galand, M., Müller-Wodarg, I., Cui, J., et al. 2009. On the Amount of Heavy Molecular Ions in Titan's Ionosphere. Planet. Space Sci., 57(Dec.), 1857–1865. doi:10.1016/j.pss.2009.07.014.Google Scholar
Waite, J. H., Niemann, H., Yelle, R. V., Kasprzak, W. T., et al. 2005. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 308(May), 982–986. doi:10.1126/science.1110652.Google Scholar
Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., et al. 2007. The Process of Tholin Formation in Titan's Upper Atmosphere. Science, 316(May), 870-. doi:10.1126/science.1139727.Google Scholar
Wei, H. Y., Russell, C. T., Wahlund, J.-E., Dougherty, M. K., et al. 2007. Cold Ionospheric Plasma in Titan's Magnetotail. Geophys. Res. Lett., 34(Nov.), 24. doi:10.1029/2007GL030701.Google Scholar
Wei, H. Y., Russell, C. T., Dougherty, M. K., Neubauer, F. M., et al. 2010. Upper Limits on Titan's Magnetic Moment and Implications for Its Interior. J. Geophys. Res. (Planets), 115(E14), 10007. doi:10.1029/2009JE003538.Google Scholar
Wei, H. Y., Russell, C. T., Dougherty, M. K., Ma, Y. J., et al. 2011. Unusually Strong Magnetic Fields in Titan's Ionosphere: T42 Case Study. Adv. Space Res., 48(July), 314–322. doi:10.1016/j.asr.2011.02.009.Google Scholar
Westlake, J. H., Bell, J. M., Waite, J. H. Jr., Johnson, R. E., et al. 2011. Titan's Thermospheric Response to Various Plasma Environments. J. Geophys. Res. (Space Physics), 116(A15), 3318. doi:10.1029/2010JA016251.Google Scholar
Whitten, R. C., Baldwin, B., Knudsen, W. C., Miller, K. L., et al. 1982. The Venus Ionosphere at Grazing Incidence of Solar Radiation – Transport of Plasma to the Night Ionosphere. Icarus, 51(Aug.), 261–270. doi:10.1016/0019-1035(82)90082-3.Google Scholar
Winglee, R. M., Snowden, D., and Kidder, A. 2009. Modification of Titan's Ion Tail and the Kronian Magnetosphere: Coupled Magnetospheric Simulations. J. Geophys. Res. (Space Physics), 114(A13), 5215. doi:10.1029/2008JA013343.Google Scholar
Winser, K. J., Lockwood, M., Jones, G. O. L., and Williams, P. J. S., 1989. Observations of Large Field-Aligned Flows of Thermal Plasma in the Auroral Ionosphere. Adv. Space Res., 9, 57–59. doi:10.1016/0273-1177(89)90341-4.Google Scholar
Withers, P. 2008. Theoretical Models of Ionospheric Electrodynamics and Plasma Transport. J. Geophys. Res. (Space Physics), 113(A12), 7301. doi:10.1029/2007JA012918.Google Scholar
Yau, A. W., Abe, T., and Peterson, W. K. 2007. The Polar Wind: Recent Observations. J. Atmos. Solar-Terrestrial Phys., 69(Nov.), 1936–1983. doi:10.1016/j.jastp.2007.08.010.Google Scholar
Zaitsev, V. V., Shaposhnikov, V. E., Khodachenko, M. L., Rucker, H. O., et al. 2010. Acceleration of Electrons in Titan's Ionosphere. J. Geophys. Res. (Space Physics), 115(A14), 3212. doi:10.1029/2008JA013958.Google Scholar
Zheng, Y., Moore, T. E., Mozer, F. S., Russell, C. T., et al. 2005. Polar Study of Ionospheric Ion Outflow versus Energy Input. J. Geophys. Res. (Space Physics), 110(A9), 7210. doi:10.1029/2004JA010995.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×