Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T04:21:11.726Z Has data issue: false hasContentIssue false

8 - Titan's haze

Published online by Cambridge University Press:  05 January 2014

R. West
Affiliation:
California Institute of Technology
P. Lavvas
Affiliation:
Université de Reims Champagne-Ardenne
C. Anderson
Affiliation:
NASA/Goddard Space Flight Center, Planetary Systems Lab
H. Imanaka
Affiliation:
University of Arizona
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

8.1 Introduction

This chapter summarizes what is known about Titan's extensive photochemical haze, which extends from the surface to about 1000 km altitude. The haze determines the appearance of the moon across a broad spectral range. It dominates the opacity short of 5 μm and it also affects the radiation transfer in the thermal IR. Thus, haze plays a major role in Titan's radiative energy budget. It is also a sink for gas phase photochemistry and a source of surface material, and the haze has much to tell us about atmospheric dynamics.

A great deal has already been written about Titan's haze, summarized most recently by both Tomasko and West (2009) and Lorenz et al. (2009). In this chapter we briefly review the key attributes of the haze determined from in situ measurements made by the Descent Imager/Spectral Radiometer (DISR) instrument and then focus on developments more recent than those reviewed by Tomasko and West (2009). These developments include new observations and analyses, laboratory investigations relevant to the haze's physical characteristics (size, shape, and density), its chemical composition and optical properties, and microphysical model studies that simulate the interaction of haze with the gas phase background and the impact of haze in the radiative energy budget and the atmospheric dynamics.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 285 - 321
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achterberg, R. K., Conrath, B. J., Gierasch, P. J., Flasar, F. M., et al. 2008a. Observation of a Tilt of Titan's Middle-Atmospheric Superrotation. Icarus, 197, 549–555. doi:10.1016/j.icarus.2008.05.014.Google Scholar
Achterberg, R. K., Conrath, B. J., Gierasch, P. J., Flasar, F. M., et al. 2008b. Titan's Middle-Atmospheric Temperatures and Dynamics Observed by the Cassini Composite Infrared Spectrometer. Icarus, 194, 263–277. doi:10.1016/j.icarus.2007.09.029.Google Scholar
Ádárnkovics, M., and Boering, K. A. 2003. Photochemical Formation Rates of Organic Aerosols through Time-Resolved in Situ Laboratory Measurements. J. Geophys. Res. (Planets), 108, 5092. doi:10.1029/2002JE002028.Google Scholar
Anderson, C. M., and Samuelson, R. E. 2011. Titan's Aerosol and Stratospheric Ice Opacities between 18 and 500 μm: Vertical and Spectral Characteristics from Cassini CIRS. Icarus, 212, 762–778. doi:10.1016/j.icarus.2011.01.024.Google Scholar
Anderson, C. M., Samuelson, R. E., Bjoraker, G. L., and Achterberg, R. K. 2010. Particle Size and Abundance of HC3N Ice in Titan's Lower Stratosphere at High Northern Latitudes. Icarus, 207, 914–922. doi:10.1016/j.icarus.2009.12.024.Google Scholar
Bakes, E. L. O., McKay, C. P., and Bauschlicher, C. W. 2002. Photoelectric Charging of Submicron Aerosols and Macromolecules in the Titan Haze. Icarus, 157, 464–475. doi:10.1006/icar.2002.6843.Google Scholar
Bar-Nun, A., Kleinfeld, I., and Ganor, E. 1988. Shape and Optical Properties of Aerosols Formed by Photolysis of Acetylene, Ethylene, and Hydrogen Cyanide. J. Geophys. Res., 93, 8383–8387. doi:10.1029/JD093iD07p08383.Google Scholar
Bar-Nun, A., Dimitrov, V, and Tomasko, M. 2008. Titan's Aerosols: Comparison between Our Model and DISR Findings. Planet. Space Sci., 56, 708–714. doi:10.1016/j.pss.2007.11.014.Google Scholar
Barth, E. L., and Toon, O. B. 2003. Microphysical Modeling of Ethane Ice Clouds in Titan's Atmosphere. Icarus, 162, 94–113. doi:10.1016/S0019-1035(02)00067-2.Google Scholar
Barth, E. L., and Toon, O. B. 2006. Methane, Ethane, and Mixed Clouds in Titan's Atmosphere: Properties Derived from Microphysical Modeling. Icarus, 182, 230–250. doi:10.1016/j.icarus.2005.12.017.Google Scholar
Bellucci, A., Sicardy, B., Drossart, P., Rannou, P., et al. 2009. Titan Solar Occultation Observed by Cassini/VIMS: Gas Absorption and Constraints on Aerosol Composition. Icarus, 201, 198–216. doi:10.1016/j.icarus.2008.12.024.Google Scholar
Bernard, J.-M., Quirico, E., Brissaud, O., Montagnac, G., et al. 2006. Reflectance Spectra and Chemical Structure of Titan's Tholins: Application to the Analysis of Cassini Huygens Observations. Icarus, 185, 301–307. doi:10.1016/j.icarus.2006.06.004.Google Scholar
Borucki, W. J., Levin, Z., Whitten, R. C., Keesee, R. G., et al. 1987. Predictions of the Electrical Conductivity and Charging of the Aerosols in Titan's Atmosphere. Icarus, 72, 604–622. doi:10.1016/0019-1035(87)90056-X.Google Scholar
Borucki, W. J., Whitten, R. C., Bakes, E. L. O., Barth, E., et al. 2006. Predictions of the Electrical Conductivity and Charging of the Aerosols in Titan's Atmosphere. Icarus, 181(Apr), 527–544. doi:10.1016/j.icarus.2005.10.030.Google Scholar
Brucato, J. R., Migliorini, A., Barucci, M. A., Carvano, J. M., et al. 2010. Reflectance Spectra of Titan Tholin between 7000 and 10 cm-1. Interpretation of Cassini/CIRS Observation of Saturn's Satellite Phoebe. Astron. and Astrophys., 516, A92+. doi:10.1051/0004-6361/200912054.Google Scholar
Cabane, M., Chassefiere, E., and Israël, G. 1992. Formation and Growth of Photochemical Aerosols in Titan's Atmosphere. Icarus, 96, 176–189. doi:10.1016/0019-1035(92)90071-E.Google Scholar
Cabane, M., Rannou, P., Chassefiere, E., and Israël, G. 1993. Fractal Aggregates in Titan's Atmosphere. Planet. and Space Sci., 41, 257–267. doi:10.1016/0032-0633(93)90021-S.Google Scholar
Chassefiere, E., and Cabane, M. 1995. Two Formation Regions for Titan's Hazes: Indirect Clues and Possible Synthesis Mechanisms. Planet. Space Sci., 43, 91–103. doi:10.1016/0032-0633(94)00138-H.Google Scholar
Clarke, D. W., and Ferris, J. P. 1997. Titan Haze: Structure and Properties of Cyanoacetylene and Cyanoacetylene-Acetylene Photopolymers. Icarus, 127, 158–172. doi:10.1006/icar.1996.5667.Google Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., Young, D. T., et al. 2007. Discovery of Heavy Negative Ions in Titan's Ionosphere. Geophysical Research Lett., 342, L22103. doi:10.1029/2007GL030978.Google Scholar
Coates, A. J., Wellbrock, A., Lewis, G. R., Jones, G. H., et al. 2009. Heavy Negative Ions in Titan's Ionosphere: Altitude and Latitude Dependence. Planet. Space. Sci., 57, 1866–1871. doi:10.1016/j.pss.2009.05.009.Google Scholar
Coll, P., Coscia, D., Smith, N., Gazeau, M.-C., et al. 1999. Experimental Laboratory Simulation of Titan's Atmosphere: Aerosols and Gas Phase. Planet. Space Sci., 47, 1331–1340. doi:10.1016/S0032-0633(99)00054-9.Google Scholar
Cours, T., Rannou, P., Coustenis, A., and Hamdouni, A. 2010. A New Analysis of the ESO Very Large Telescope (VLT) Observations of Titan at 2 μm. Planet. Space Sci., 58, 1708–1714. doi:10.1016/j.pss.2009.12.009.Google Scholar
Cours, T., Burgalat, J., Rannou, P., Rodriguez, S., etal. 2011. Dual Origin of Aerosols in Titan's Detached Haze Layer. Astrophys. J. Lett., 741, L32. doi:10.1088/2041-8205/741/2/L32.Google Scholar
Coustenis, A., Bézard, B., and Gautier, D. 1989. Titan's Atmosphere from Voyager Infrared Observations. I – The Gas Composition of Titan's Equatorial Region. Icarus, 80, 54–76. doi:10.1016/0019-1035(89)90161-9.Google Scholar
Coustenis, A., Schmitt, B., Khanna, R. K., and Trotta, F. 1999. Plausible Condensates in Titan's Stratosphere from Voyager Infrared Spectra. Planet. Space Sci., 47, 1305–1329. doi:10.1016/S0032-0633(99)00053-7.Google Scholar
Coustenis, A., Achterberg, R. K., Conrath, B. J., Jennings, D. E., et al. 2007. The Composition of Titan's Stratosphere from Cassini/CIRS Mid-Infrared Spectra. Icarus, 189, 35–62. doi:10.1016/j.icarus.2006.12.022.Google Scholar
Crary, F. J., Magee, B. A., Mandt, K., Waite, J. H., et al. 2009. Heavy Ions, Temperatures and Winds in Titan's Ionosphere: Combined Cassini CAPS and INMS Observations. Planet. Space Sci., 57, 1847–1856. doi:10.1016/j.pss.2009.09.006.Google Scholar
Cruikshank, D. P., Imanaka, H., and Dalle Ore, C. M. 2005. Tholins as Coloring Agents on Outer Solar System Bodies. Adv. in Space Res., 36, 178–183. doi:10.1016/j.asr.2005.07.026.Google Scholar
Cui, J., Yelle, R. V, Vuitton, V, Waite, J. H., et al. 2009. Analysis of Titan's Neutral Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 200, 581–615. doi:10.1016/j.icarus.2008.12.005.Google Scholar
Curtis, D. B., Hatch, C. D., Hasenkopf, C. A., et al. 2008. Laboratory Studies of Methane and Ethane Adsorption and Nucleation onto Organic Particles: Application to Titan's Clouds. Icarus, 195, 792–801. doi:10.1016/j.icarus.2008.02.003.Google Scholar
Curtis, D. B., Glandorf, D. L., Toon, O. B., Tolbert, M. A., et al. 2005. Laboratory Studies of Butane Nucleation on Organic Haze Particles: Application to Titan's Clouds. J. Phys. Chem. A, 109(7), 1382–1390. doi:10.1021/jp045596h.Google Scholar
de Kok, R., Irwin, P. G. J., Teanby, N. A., Nixon, C. A., et al. 2007. Characteristics of Titan's Stratospheric Aerosols and Condensate Clouds from Cassini CIRS Far-Infrared Spectra. Icarus, 191, 223–235. doi:10.1016/j.icarus.2007.04.003.Google Scholar
de Kok, R., Irwin, P. G. J., and Teanby, N. A. 2008. Condensation in Titan's Stratosphere during Polar Winter. Icarus, 197, 572–578. doi:10.1016/j.icarus.2008.05.024.Google Scholar
de Kok, R., Irwin, P. G. J., Teanby, N. A., Vinatier, S., et al. 2010. A Tropical Haze Band in Titan's Stratosphere. Icarus, 207, 485–490. doi:10.1016/j.icarus.2009.10.021.Google Scholar
de Vanssay, E., McDonald, G. D., and Khare, B. N. 1999. Evidence from Scanning Electron Microscopy of Experimental Influences on the Morphology of Triton and Titan Tholins. Planet. Space Sci., 47, 433–440.Google Scholar
dello Russo, N., and Khanna, R. K. 1996. Laboratory Infrared Spectroscopic Studies of Crystalline Nitriles with Relevance to Outer Planetary Systems. Icarus, 123, 366–395. doi:10.1006/icar.1996.0165.Google Scholar
Dimitrov, V, and Bar-Nun, A. 1997. An Adequate Kinetic Model of Photochemical Aerosol Formation in Titan's Atmosphere. Adv. Space Res., 19, 1103–1112. doi:10.1016/S0273-1177(97)00359-1.Google Scholar
Dimitrov, V, and Bar-Nun, A. 1999. A Model of Energy-Dependent Agglomeration of Hydrocarbon Aerosol Particles and Implication to Titan's Aerosols. J. Aerosol Sci., 30(1), 35–49.Google Scholar
Dimitrov, V, and Bar-Nun, A. 2002. Aging of Titan's Aerosols. Icarus, 156, 530–538. doi:10.1006/icar.2001.6802.Google Scholar
Dimitrov, V., and Bar-Nun, A. 2003. Hardening of Titan's Aerosols by Their Charging. Icarus, 166, 440–443. doi:10.1016/j.icarus.2003.07.007.Google Scholar
Friedlander, S. 2000. Smoke, Dust and Haze. Fundamentals of Aerosol Dynamics. 2nd ed. Oxford University Press.
Griffith, C. A., Penteado, P., Rannou, P., Brown, R., et al. 2006. Evidence for a Polar Ethane Cloud on Titan. Science, 313(5793), 1620–1622. doi:10.1126/science.1128245.Google Scholar
Hadamcik, E., Renard, J.-B., Alcouffe, G., Cernogora, G., et al. 2009. Laboratory Light-Scattering Measurements with Titan's Aerosols Analogues Produced by a Dusty Plasma. Planet. Space Sci., 57, 1631–1641. doi:10.1016/j.pss.2009.06.013.Google Scholar
Hasenkopf, C. A., Beaver, M. R., Trainer, M. G., Langley Dewitt, H., et al. 2010. Optical Properties of Titan and Early Earth Haze Laboratory Analogs in the Mid-Visible. Icarus, 207, 903–913. doi:10.1016/j.icarus.2009.12.015.Google Scholar
Heitz, T., Drevillon, B., Godet, C., and Bouree, J. E. 1998. Quantitative Study of C-H Bonding in Polymerlike Amorphous Carbon Films Using In Situ Infrared Ellipsometry. Phys. Rev. B (Condensed Matter and Materials Physics), 581, 13957–13973. doi:10.1103/PhysRevB.58.13957.Google Scholar
Hourdin, F., Talagrand, O., Sadourny, R., Courtin, R., et al. 1995. Numerical Simulation of the General Circulation of the Atmosphere of Titan. Icarus, 117, 358–374. doi:10.1006/icar.1995.1162.Google Scholar
Hutzell, W. T., McKay, C. P, Toon, O. B, and Hourdin, F. 1996. Simulations of Titan's Brightness by a Two-Dimensional Haze Model. Icarus, 119, 112–129. doi:10.1006/icar.1996.0005.Google Scholar
Imanaka, H., and Smith, M. A. 2007. Role of Photoionization in the Formation of Complex Organic Molecules in Titan's Upper Atmosphere. Geophys. Res. Lett., 340, L02204. doi:10.1029/2006GL028317.Google Scholar
Imanaka, H., Khare, B. N., Elsila, J. E., Bakes, E. L. O., et al. 2004. Laboratory Experiments of Titan Tholin Formed in Cold Plasma at Various Pressures: Implications for Nitrogen-Containing Polycyclic Aromatic Compounds in Titan Haze. Icarus, 168, 344–366. doi:10.1016/j.icarus.2003.12.014.Google Scholar
Imanaka, H., Khare, B. N., McKay, C. P., and Cruikshank, D. P. 2005. Complex Refractive Indices of Tholins Produced from Various Initial Gas Mixtures and Formation Pressures: Implications for Titan, the Early Earth, and the Outer Solar System Bodies. Pages 772+ of AAS/Division for Planetary Sciences Meeting Abstracts #37. Bulletin of the American Astronomical Society. vol. 37.
Imanaka, H., and Smith, M. A. 2010. Formation of Nitrogenated Organic Aerosols in the Titan Upper Atmosphere. Proc. Nat. Acad. Sci., 107(28), 12423–12428. doi:10.1073/pnas.0913353107.Google Scholar
Imanaka, H., Cruikshank, D. P., Khare, B. N., and McKay, C. P. 2012. Optical Constants of Titan Tholins at Mid-Infrared Wavelengths (2.5-25 μm) and Possible Chemical Nature of Titan's Haze Particles. Icarus, 218, 247–261.Google Scholar
Kaiser, R. I., Maksyutenko, P., Ennis, C., Zhang, F., et al. 2010. Untangling the Chemical Evolution of Titan's Atmosphere and Surface – From Homogeneous to Heterogeneous Chemistry. Faraday Discuss., 147, 429–478. doi:10.1039/C003599H.Google Scholar
Karkoschka, E., and Tomasko, M. G. 2009. Rain and Dewdrops on Titan Based on In Situ Imaging. Icarus, 199, 442–448. doi:10.1016/j.icarus.2008.09.020.Google Scholar
Karkoschka, Erich. 1998. Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD Spectrophotometry. Icarus, 133, 134–146. doi:10.1006/icar.1998.5913.Google Scholar
Khanna, R., Pererajarmer, M., and Ospina, M. 1987. Vibrational Infrared and Raman Spectra of Dicyanoacetylene. Spectrochimica Acta Part A: Molecular Spectroscopy, 43, 421–425. doi:10.1016/0584-8539(87)80128-9.Google Scholar
Khanna, R. K. 2005. Condensed Species in Titan's Stratosphere: Confirmation of Crystalline Cyanoacetylene (HC3N) and Evidence for Crystalline Acetylene (C2H2) on Titan. Icarus, 178, 165–170. doi:10.1016/j.icarus.2005.03.011.Google Scholar
Khare, B. N., Sagan, C., Arakawa, E. T., Suits, F., et al. 1984. Optical Constants of Organic Tholins Produced in a Simulated Titanian Atmosphere – From Soft X-ray to Microwave Frequencies. Icarus, 60, 127–137. doi:10.1016/0019-1035(84)90142-8.Google Scholar
Khare, B. N., Bakes, E. L. O., Imanaka, H., McKay, C. P., et al. 2002. Analysis of the Time-Dependent Chemical Evolution of Titan Haze Tholin. Icarus, 160, 172–182. doi:10.1006/icar.2002.6899.Google Scholar
Koskinen, T. T., Yelle, R. V., Snowden, D. S., Lavvas, P., et al. 2011. The Mesosphere and Lower Thermosphere of Titan Revealed by Cassini/UVIS Stellar Occultations. Icarus, 216, 507–534. doi:10.1016/j.icarus.2011.09.022.Google Scholar
Landera, Alexander, and Mebel, Alexander M. 2010. Mechanisms of Formation of Nitrogen-Containing Polycyclic Aromatic Compounds in Low-Temperature Environments of Planetary Atmospheres: A Theoretical Study. Faraday Discuss., 147, 479–494. doi:10.1039/C003475D.Google Scholar
Lavvas, P., Yelle, R. V, and Vuitton, V 2009. The Detached Haze Layer in Titan's Mesosphere. Icarus, 201, 626–633. doi:10.1016/j.icarus.2009.01.004.Google Scholar
Lavvas, P., Yelle, R. V, and Griffith, C. A. 2010. Titan's Vertical Aerosol Structure at the Huygens Landing Site: Constraints on Particle Size, Density, Charge, and Refractive Index. Icarus, 210, 832–842. doi:10.1016/j.icarus.2010.07.025.Google Scholar
Lavvas, P., Griffith, C. A., and Yelle, R. V 2011a. Condensation in Titan's Atmosphere at the Huygens Landing Site. Icarus, 215, 732–750. doi:10.1016/j.icarus.2011.06.040.Google Scholar
Lavvas, P., Sander, M., Kraft, M., and Imanaka, H. 2011b. Surface Chemistry and Particle Shape: Processes for the Evolution of Aerosols in Titan's Atmosphere. Astrophys. J., 728, 80. doi:10.1088/0004-637X/728/2/80.Google Scholar
Lavvas, P. P., Coustenis, A., and Vardavas, I. M. 2008a. Coupling Photochemistry with Haze Formation in Titan's Atmosphere, Part I: Model Description. Planet. Space Sci., 56(1), 27–66. doi:10.1016/j.pss.2007.05.026.Google Scholar
Lavvas, P. P., Coustenis, A., and Vardavas, I. M. 2008b. Coupling Photochemistry with Haze Formation in Titan's Atmosphere, Part II: Results and Validation with Cassini/Huygens Data. Planet. Space Sci., 56(1), 67–99. doi:10.1016/j.pss.2007.05.027.Google Scholar
Lebonnois, S., Bakes, E. L. O., and McKay, C. P. 2002. Transition from Gaseous Compounds to Aerosols in Titan's Atmosphere. Icarus, 159, 505–517. doi:10.1006/icar.2002.6943.Google Scholar
Liang, M.-C., Yung, Y. L., and Shemansky, D. E. 2007. Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan. ApJ Lett., 661, L199–L202. doi:10.1086/518785.Google Scholar
López-Moreno, J. J., Molina-Cuberos, G. J., Hamelin, M., Grard, R., et al. 2008. Structure of Titan's Low Altitude Ionized Layer from the Relaxation Probe Onboard HUYGENS. Geophys. Res. Lett., 35, 22104. doi:10.1029/2008GL035338.Google Scholar
Lorenz, R. D., Lemmon, M. T., Smith, P. H., and Lockwood, G. W. 1999. Seasonal Change on Titan Observed with the Hubble Space Telescope WFPC-2. Icarus, 142, 391–401. doi:10.1006/icar.1999.6225.Google Scholar
Lorenz, R. D., Brown, M. E., and Flasar, F. M. 2009. Seasonal Change on Titan. Pages 353–372 of: Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-2_4.
Mayo, L. A., and Samuelson, R. E. 2005. Condensate Clouds in Titan's North Polar Stratosphere. Icarus, 176, 316–330. doi:10.1016/j.icarus.2005 .01.020.Google Scholar
McKay, C. P., Pollack, J. B., and Courtin, R. 1989. The Thermal Structure of Titan's Atmosphere. Icarus, 80, 23–53. doi:10.1016/0019-1035(89)90160-7.Google Scholar
McKay, C. P., Coustenis, A., Samuelson, R. E., Lemmon, M. T., et al. 2001. Physical Properties of the Organic Aerosols and Clouds on Titan. Planet. Space Sci., 49, 79–99. doi:10.1016/S0032-0633(00)00051-9.Google Scholar
McKay, C. P., Pollack, J. B., and Courtin, R. 1991. The Greenhouse and Antigreenhouse Effects on Titan. Science, 253, 1118–1121. doi:10.1126/science.253.5024.1118.Google Scholar
Mebel, A. M., Kislov, V. V., and Kaiser, R. I. 2008. Photoinduced Mechanism of Formation and Growth of Polycyclic Aromatic Hydrocarbons in Low-Temperature Environments via Successive Ethynyl Radical Additions. J. Am. Chem. Soc., 130(41), 13618–13629. doi:10.1021/ja804198a.Google Scholar
Michael, M., Tripathi, S. N., Arya, P., Coates, A., et al. 2011. High-Altitude Charged Aerosols in the Atmosphere of Titan. Planet. Space Sci., 59, 880–885. doi:10.1016/j.pss.2011.03.010.Google Scholar
Moore, M. H., Ferrante, R. F., Moore, W. J., and Hudson, R. 2010. Infrared Spectra and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere. ApJS, 191, 96–112. doi:10.1088/0067-0049/191/1/96.Google Scholar
Penteado, P. F., Griffith, C. A., Tomasko, M. G., Engel, S., et al. 2010. Latitudinal Variations in Titan's Methane and Haze from Cassini VIMS Observations. Icarus, 206, 352–365. doi:10.1016/j.icarus.2009.11.003.Google Scholar
Porco, C. C., Baker, E., Barbara, J., Beurle, K., et al. 2005. Imaging of Titan from the Cassini Spacecraft. Nature, 434, 159–168. doi:10.1038/nature03436.Google Scholar
Quirico, E., Montagnac, G., Lees, V, McMillan, P. F., et al. 2008. New Experimental Constraints on the Composition and Structure of Tholins. Icarus, 198, 218–231. doi:10.1016/j.icarus.2008.07.012.Google Scholar
Rages, K., and Pollack, J. B. 1983. Vertical Distribution of Scattering Hazes in Titan's Upper Atmosphere. Icarus, 55, 50–62. doi:10.1016/0019-1035(83)90049-0.Google Scholar
Ramirez, S. I., Coll, P., da Silva, A., Navarro-Gonzalez, R., et al. 2002. Complex Refractive Index of Titan's Aerosol Analogues in the 200-900 nm Domain. Icarus, 156, 515–529. doi:10.1006/icar.2001.6783.Google Scholar
Rannou, P., Cabane, M., Chassefiere, E., Botet, R., et al. 1995. Titan's Geometric Albedo: Role of the Fractal Structure of the Aerosols. Icarus, 118, 355–372. doi:10.1006/icar.1995.1196.Google Scholar
Rannou, P., McKay, C. P., Botet, R., and Cabane, M. 1999. Semi-Empirical Model of Absorption and Scattering by Isotropic Fractal Aggregates of Spheres. Planet. Space Sci., 47, 385–396. doi:10.1016/S0032-0633(99)00007-0.Google Scholar
Rannou, P., Hourdin, F., and McKay, C. P. 2002. A Wind Origin for Titan's Haze Structure. Nature, 418, 853–856.Google Scholar
Rannou, P., McKay, C. P., and Lorenz, R. D. 2003. A Model of Titan's Haze of Fractal Aerosols Constrained by Multiple Observations. Planet. Space Sci., 51, 963–976. doi:10.1016/j.pss.2003.05.008.Google Scholar
Rannou, P., Hourdin, F., McKay, C. P., and Luz, D. 2004. A Coupled Dynamics-Microphysics Model of Titan's Atmosphere. Icarus, 170, 443–462. doi:10.1016/j.icarus.2004.03.007.Google Scholar
Rannou, P., Cours, T., Le Mouélic, S., Rodriguez, S., et al. 2010. Titan Haze Distribution and Optical Properties Retrieved from Recent Observations. Icarus, 208, 850–867. doi:10.1016/j.icarus.2010.03.016.Google Scholar
Rannou, P., Cabane, M., Botet, R., and Chassefiere, E. 1997. A New Interpretation of Scattered Light Measurements at Titan's Limb. J. Geophys. Res., 102, 10997–11014. doi:10.1029/97JE00719.Google Scholar
Raulin, F., Frere, C., Do, L., Khlifi, M., et al. 1992. Organic Chemistry on Titan versus Terrestrial Prebiotic Chemistry: Exobiological Implications. Proceedings Symposium on Titan, Toulouse, France.
Ristein, J., Stief, R. T., Ley, L., and Beyer, W. 1998. A Comparative Analysis of a-C:H by Infrared Spectroscopy and Mass Selected Thermal Effusion. J. Appl. Phys., 84, 3836–3847. doi:10.1063/1.368563.Google Scholar
Roman, M. T., West, R. A., Banfield, D. J., Gierasch, P. J., et al. 2009. Determining a Tilt in Titan's North-South Albedo Asymmetry from Cassini Images. Icarus, 203, 242–249. doi:10.1016/j.icarus.2009.04.021.Google Scholar
Sagan, C., and Thompson, W. R. 1984. Production and Condensation of Organic Gases in the Atmosphere of Titan. Icarus, 59, 133–161. doi:10.1016/0019-1035(84)90018-6.Google Scholar
Samuelson, R. E., and Mayo, L. A. 1991. Thermal Infrared Properties of Titan's Stratospheric Aerosol. Icarus, 91, 207–219. doi:10.1016/0019-1035(91)90019-P.Google Scholar
Samuelson, R. E., Mayo, L. A., Knuckles, M. A., and Khanna, R. J. 1997. C4N2 Ice in Titan's North Polar Stratosphere. Planet. Space Sci., 45, 941–948. doi:10.1016/S0032-0633(97)00088-3.Google Scholar
Samuelson, R. E., Smith, M. D., Achterberg, R. K., and Pearl, J. C. 2007. Cassini CIRS Update on Stratospheric Ices at Titan's Winter Pole. Icarus, 189, 63–71. doi:10.1016/j.icarus.2007.02.005.Google Scholar
Scattergood, T. W., Lau, E. Y., and Stone, B. M. 1992. Titan's Aerosols. I – Laboratory Investigations of Shapes, Size Distributions, and Aggregation of Particles Produced by UV Photolysis of Model Titan Atmospheres. Icarus, 99, 98–105. doi:10.1016/0019-1035(92)90174-6.Google Scholar
Sciamma-O'Brien, E., Dahoo, P.-R., Hadamcik, E., Carrasco, N., et al. 2012. Optical constants from 370 nm to 900 nm of Titan Tholins Produced in a Low Pressure RF Plasma Discharge. Icarus, 218 (Mar.), 356–363. doi:10.1016/j.icarus.2011.12.014.Google Scholar
Sekine, Y., Imanaka, H., Matsui, T., et al. 2008a. The Role of Organic Haze in Titan's Atmospheric Chemistry: I. Laboratory Investigation on Heterogeneous Reaction of Atomic Hydrogen with Titan Tholin. Icarus, 186–200.Google Scholar
Sekine, Y., Lebonnois, S., Imanaka, H., Matsui, T., et al. 2008b. The Role of Organic Haze in Titan's Atmospheric Chemistry: II. Effect of Heterogeneous Reaction to the Hydrogen Budget and Chemical Composition of the Atmosphere. Icarus, 201–211.Google Scholar
Sicardy, B., Ferri, F., Roques, F., Lecacheux, J., et al. 1999. The Structure of Titan's Stratosphere from the 28 Sgr Occultation. Icarus, 142, 357–390. doi:10.1006/icar.1999.6219.Google Scholar
Sicardy, B., Colas, F., Widemann, T., Bellucci, A., et al. 2006. The Two Titan Stellar Occultations of 14 November 2003. J. Geophys. Res. (Planets), 111, E11S91. doi:10.1029/2005JE002624.Google Scholar
Skorov, Yu. V, Keller, H. U., and Rodin, A. V 2010. Optical Properties of Aerosols in Titan's Atmosphere: Large Fluffy Aggregates. Planet. Space Sci., 58 (Dec), 1802–1810. doi:10.1016/j.pss.2010.08.002.Google Scholar
Sromovsky, L. A., Suomi, V. E., Pollack, J. B., Krauss, R. J., et al. 1981. Implications of Titan's North-South Brightness Asymmetry. Nature, 292, 698–702. doi:10.1038/292698a0.Google Scholar
Szopa, C., Cernogora, G., Boufendi, L., Correia, J. J., et al. 2006. PAMPRE: A Dusty Plasma Experiment for Titan's Tholins Production and Study. Planetary and Space Science, 54, 394–404. doi:10.1016/j.pss.2005.12.012.Google Scholar
Teanby, N. A., Irwin, P. G. J., de Kok, R., Vinatier, S., et al. 2007. Vertical Profiles of HCN, HC3N, and C2H2 in Titan's Atmosphere Derived from Cassini/CIRS data. Icarus, 186, 364–384. doi:10.1016/j.icarus.2006.09.024.Google Scholar
Thomas-Osip, J. E., Gustafson, B. A. S., Kolokolova, L., and Xu, Y.-L. 2005. An Investigation of Titan's Aerosols Using Microwave Analog Measurements and Radiative Transfer Modeling. Icarus, 179, 511–522. doi:10.1016/j.icarus.2005.06.017.Google Scholar
Tokano, T., Neubauer, F. M., Laube, M., and McKay, C. P. 1999. Seasonal Variation of Titan's Atmospheric Structure Simulated by a General Circulation Model. Planet. Space. Sci., 47, 493–520. doi:10.1016/S0032-0633(99)00011-2.Google Scholar
Tomasko, M. G., and Smith, P. H. 1982. Photometry and Polarimetry of Titan – Pioneer 11 Observations and Their Implications for Aerosol Properties. Icarus, 51, 65–95. doi:10.1016/0019-1035(82)90030-6.Google Scholar
Tomasko, M. G., and West, R. A. 2009. Aerosols in Titan's Atmosphere. Pages 297–322 of Brown, R. H., Lebreton, J.-P., and Waite, J. H. (eds.), Titan from Cassini-Huygens. Springer. doi:10.1007/978-1-4020-9215-2.
Tomasko, M. G., Buchhauser, D., Bushroe, M., Dafoe, L. E., et al. 2002. The Descent Imager/Spectral Radiometer (DISR) Experiment on the Huygens Entry Probe of Titan. Space Sci. Rev., 104, 469–551. doi:10.1023/A:1023632422098.Google Scholar
Tomasko, M. G., Archinal, B., Becker, T., Bézard, B., et al. 2005. Rain, Winds and Haze During the Huygens Probe's Descent to Titan's Surface. Nature, 438, 765–778. doi:10.1038/nature04126.Google Scholar
Tomasko, M. G., Doose, L., Engel, S., Dafoe, L. E., et al. 2008a. A Model of Titan's Aerosols Based on Measurements Made Inside the Atmosphere. Planet. Space Sci., 56, 669–707. doi:10.1016/j.pss.2007.11.019.Google Scholar
Tomasko, M. G., Bézard, B., Doose, L., Engel, S., et al. 2008b. Heat Balance in Titan's Atmosphere. Planet. Space Sci., 56, 648–659. doi:10.1016/j.pss.2007.10.012.Google Scholar
Tomasko, M. G., Bézard, B., Doose, L., Engel, S., et al. 2008. Measurements of Methane Absorption by the Descent Imager/Spectral Radiometer (DISR) during Its Descent through Titan's Atmosphere. Planet. Space Sci., 56, 624–647. doi:10.1016/j.pss.2007.10.009.Google Scholar
Tomasko, M. G., Doose, L. R., Dafoe, L. E., and See, C. 2009. Limits on the Size of Aerosols from Measurements of Linear Polarization in Titan's Atmosphere. Icarus, 204, 271–283. doi:10.1016/j.icarus.2009.05.034.Google Scholar
Toon, O. B., Turco, R. P., and Pollack, J. B. 1980. A Physical Model of Titan's Clouds. Icarus, 43, 260–282. doi:10.1016/0019-1035(80)90173-6.Google Scholar
Toon, O. B., McKay, C. P., Griffith, C. A., and Turco, R. P. 1992. A Physical Model of Titan's Aerosols. Icarus, 95, 24–53. doi:10.1016/0019-1035(92)90188-D.Google Scholar
Trainer, M. G., Pavlov, A. A., Dewitt, H. L., Jimenez, J. L., et al. 2006. Inaugural Article: Organic Haze on Titan and the Early Earth. Proc. Nat. Acad. Sci., 1031, 18035–18042. doi:10.1073/pnas.0608561103.Google Scholar
Tran, B. N., Joseph, J. C., Ferris, J. P., Persans, P. D., et al. 2003. Simulation of Titan Haze Formation Using a Photochemical Flow Reactor: The Optical Constants of the Polymer. Icarus, 165, 379–390. doi:10.1016/S0019-1035(03)00209-4.Google Scholar
Vinatier, S., Bézard, B., Nixon, C. A., Mamoutkine, A., et al. 2010a. Analysis of Cassini/CIRS Limb Spectra of Titan Acquired during the Nominal Mission. I. Hydrocarbons, Nitriles and CO2 Vertical Mixing Ratio Profiles. Icarus, 205, 559–570. doi:10.1016/j.icarus.2009.08.013.Google Scholar
Vinatier, S., Bézard, B., de Kok, R., Anderson, C. M., et al. 2010b. Analysis of Cassini/CIRS Limb Spectra of Titan Acquired during the Nominal Mission II: Aerosol Extinction Profiles in the 600-1420 cm-1 Spectral Range. Icarus, 210, 852–866. doi:10.1016/j.icarus.2010.06.024.Google Scholar
Vinatier, S., Rannou, P., Anderson, C. M., Bézard, B., et al. 2012. Optical Constants of Titan's Stratospheric Aerosol in the 70-1500 cm-1 spectral range constrained from Cassini/CIRS observations. Icarus, 219, 5–12. doi:10.1016/j.icarus.2012.02.009.Google Scholar
Vuitton, V, Yelle, R. V, and Cui, J. 2008. Formation and Distribution of Benzene on Titan. J. Geophys. Res., 113, 05007. doi:10.1029/2007JE002997.Google Scholar
Vuitton, V, Tran, B. N., Persans, P. D., and Ferris, J. P. 2009. Determination of the Complex Refractive Indices of Titan Haze Analogs Using Photothermal Deflection Spectroscopy. Icarus, 203, 663–671. doi:10.1016/j.icarus.2009.04.016.Google Scholar
Wahlund, J.-E., Galand, M., Müller-Wodarg, I., Cui, J., et al. 2009. On the Amount of Heavy Molecular Ions in Titan's Ionosphere. Planet. Space Sci., 57, 1857–1865. doi:10.1016/j.pss.2009.07.014.Google Scholar
Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., et al. 2007. The Process of Tholin Formation in Titan's Upper Atmosphere. Science, 316, 870–875. doi:10.1126/science.1139727.Google Scholar
West, R. A., and Smith, P. H. 1991. Evidence for Aggregate Particles in the Atmospheres of Titan and Jupiter. Icarus, 90, 330–333. doi:10.1016/0019-1035(91)90113-8.Google Scholar
West, R. A., Balloch, J., Dumont, P., Lavvas, P., et al. 2011. The Evolution of Titan's Detached Haze Layer Near Equinox in 2009. Geophys. Res. Lett., 380, L06204. doi:10.1029/2011GL046843.Google Scholar
Whitten, R. C, Borucki, W. J, and Tripathi, S. 2007. Predictions of the Electrical Conductivity and Charging of the Aerosols in Titan's Night Time Atmosphere. J. Geophys. Res., 112, E04001. doi:10.1029/2006JE002788.Google Scholar
Williams, M. W., Arakawa, E. T., and Inagaki, T. 1991. Optical and Dielectric Properties of Materials Relevant to Biological Research. Pages 95–145 of Ebashi, S., Koch, M., and Rubenstein, E. (eds.), Handbook on Synchrotron Radiation, vol. 4. Elsevier Science Publishers.
Wilson, E. H, and Atreya, S. K. 2003. Chemical Sources of Haze Formation in Titan's Atmosphere. Planet. Space Sci., 51, 1017–1033. doi:10.1016/j.pss.2003.06.003.Google Scholar
Yung, Y. L, Allen, M, and Pinto, J. P. 1984. Photochemistry of the Atmosphere of Titan – Comparison between Model and Observations. Astrophys. J. Suppl. Series, 55, 465–506. doi:10.1086/190963.Google Scholar
Zhou, L., Zheng, W., Kaiser, R. I., Landera, A., et al. 2010. Cosmic-Ray-Mediated Formation of Benzene on the Surface of Saturn's Moon Titan. Astrophys. J., 718, 1243–1251. doi:10.1088/0004-637X/718/2/1243.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×