Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T03:45:44.604Z Has data issue: false hasContentIssue false

10 - Self-extinguishing polymer–clay nanocomposites

from Part II - Flame retardancy

Published online by Cambridge University Press:  05 August 2011

Vikas Mittal
Affiliation:
The Petroleum Institute, Abu Dhabi
Get access

Summary

Introduction

Thermodynamically, the introduction of a solid particle into a polymer matrix either decreases or increases the interfacial energy, depending on the degree of interaction between polymer chains and solid surfaces. If strong absorption of the polymer chains on the surfaces takes place, the system can be approached through minimization of the interfacial energy, reducing the energy factors. Furthermore, the minimization of interfacial energy can be optimized by increasing the interfacial area of solid particles. Therefore, in order to maximize reduction of the interfacial energy, the solid particles need a large aspect ratio, making both layered silicates and carbon nanotubes (CNTs) good candidates. In particular, layered silicates cation-exchanged with organophilic surfactants can be delaminated into a single silicate sheet in a polymer matrix and remain as nanosheets with aspect ratio 100–1000. Because of this unique delamination of organophilic silicates, polymer–organoclay nanocomposites are of great interest in industry and academia. Numerous research groups have characterized and predicted the microstructures of polymer/organoclay nanocomposites using advanced techniques.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balazs, A. C.Emrick, T.Russell, T. P.Nanoparticle–polymer composites: Where two small worlds meetScience 314 2006 1107CrossRefGoogle ScholarPubMed
Si, M.Goldman, M.Rudomen, G.Gelfer, M. Y.Sokolov, J. C.Rafailovich, M. H.Effect of clay type on structure and properties of poly(methyl methacrylate)/clay nanocompositesMacromolecular Materials and Engineering 291 2006 602CrossRefGoogle Scholar
Kashiwagi, T.Du, F.Douglas, J.Winey, K. I.Harris, R. H.Shields, J. R.Nanoparticle networks reduce the flammability of polymer nanocompositesNature Materials 4 2005 928CrossRefGoogle ScholarPubMed
Gelfer, M.Burger, C.Fadeev, A.Sics, I.Chu, B.Hsiao, B. S.Heintz, A.Kojo, K.Hsu, S.-L.Si, M.Rafailovich, M.Thermally induced phase transitions and morphological changes in organoclaysLangmuir 20 2004 3746CrossRefGoogle ScholarPubMed
Si, M.Araki, T.Ade, H.Kilcoyne, A. L. D.Fisher, R.Sokolov, J. C.Rafailovich, M. H.Compatibilizing bulk polymer blends by using organoclaysMacromolecules 39 2006 4793CrossRefGoogle Scholar
Wang, Y.Zhang, Q.Fu, Q.Compatibilization of immiscible poly(propylene)/polystyrene blends using clayMacromolecular Rapid Communications 24 2003 231CrossRefGoogle Scholar
Pack, S.Si, M.Koo, J.Sokolov, J. C.Koga, T.Kashiwagi, T.Rafailovich, M. H.Mode-of-action of self-extinguishing polymer blends containing organoclaysPolymer Degradation and Stability 93 2009 306CrossRefGoogle Scholar
Kashiwagi, T.Mu, M.Winey, K. I.Cipriano, B.Raghavan, S.Pack, S.Rafailovich, M.Yang, Y.Grulke, E.Shields, J.Harris, R.Douglas, J.Relation between the viscoelastic and flammability properties of polymer nanocompositesPolymer 49 2008 4358CrossRefGoogle Scholar
Si, M.Zaitsev, V.Goldman, M.Frenkel, A.Peiffer, D. G.Weil, E.Sokolov, J. C.Rafailovich, M. H.Self-extinguishing polymer/organoclay nanocompositesPolymer Degradation and Stability 92 2007 86CrossRefGoogle Scholar
Pack, S.Kashiwagi, T.Cao, C.Korach, C.Lewin, M.Rafailovich, M.Role of surface interactions in the synergizing polymer/clay flame retardant propertiesMacromolecules 43 2010 5338CrossRefGoogle Scholar
Pack, S.Kashiwagi, T.Stemp, D.Koo, J.Si, M.Sokolov, J. C.Rafailovich, M. H.Segregation of carbon nanotubes/organoclays rendering polymer blends self-extinguishingMacromolecules 42 2009 6698CrossRefGoogle Scholar
Aseeva, R. M.Zaikov, G. E.Combustion of Polymer MaterialsMunichHanser 1985Google Scholar
Kuryla, W. C.Papa, A. J.Flame Retardancy of Polymeric MaterialsNew YorkDekker 1973Google Scholar
Lewin, M.Atlas, S. M.Pearce, E. M.Flame Retardant Polymeric MaterialsNew YorkPlenum 1975CrossRefGoogle Scholar
Levchik, SergeiWilkie, Charles A.Char formationFire Retardancy of Polymeric MaterialsGreand, A. E.Wilkie, C. A.New YorkDekker 2000 171Google Scholar
Wang, D.Echols, K.Wilkie, C. A.Cone calorimetric and thermogravimetric analysis evaluation of halogen-containing polymer nanocompositesFire and Materials 29 2005 283CrossRefGoogle Scholar
Segev, O.Kushmaro, A.Brenner, A.Environmental impact of flame retardants (persistence and biodegradabilityInternational Journal of Environmental Research and Public Health 6 2009 478CrossRefGoogle ScholarPubMed
Levchik, S.Weil, E.Overview of recent developments in the flame retardancy of polycarbonatesPolymer International 54 2005 981CrossRefGoogle Scholar
Green, JosephPhosphorus-containing flame retardantsFire Retardancy of Polymeric MaterialsGreand, A. E.Wilkie, C. A.New YorkDekker 2000 147Google Scholar
Ade, H.Winesett, D. A.Smith, A. P.Qu, S.Ge, S.Sokolov, J.Rafailovich, M.Phase segregation in polymer thin film: Elucidations by X-ray and scanning force microscopyEurophysics Letters 45 1999 526CrossRefGoogle Scholar
Hampsch, H. L.Yang, J.Wong, G.Torkelson, J. M.Thermal degradation of saturated poly(methyl methacrylateMacromolecules 21 1988 528Google Scholar
Kashiwagi, T.Inaba, A.Brown, J.Hatada, K.Kitayama, T.Masuda, E.Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylatesMacromolecules 19 1986 2160CrossRefGoogle Scholar
Gilman, J. W.Jackson, C. L.Morgan, A.Harris, R.Flammability properties of polymer-layered-silicate nanocomposites, polypropylene and polystrene nanocompositesChemistry of Materials 12 2000 1866CrossRefGoogle Scholar
Kashiwagi, T.Harris, R.Zhang, X.Briber, R. M.Cipriano, B. H.Raghavan, S. R.Awad, W. H.Shields, J. R.Flame retardant mechanism of polyamide 6–clay nanocompositesPolymer 45 2004 881CrossRefGoogle Scholar
Zhu, J.Morgan, A. B.Lamelas, F. J.Wilkie, C. A.Fire properties of polystyrene–clay nanocompositesChemistry of Materials 13 2001 3774CrossRefGoogle Scholar
Gilman, J. W.Flammability and thermal stability studies of polymer layered-silicate (clay) nanocompositesApplied Clay Science 15 1999 31CrossRefGoogle Scholar
Rhodes, B. T.Quintiere, J. G.Burning rate and flame heat flux for PMMA in a cone calorimeterFire Safety Journal 26 1996 221CrossRefGoogle Scholar
Hopkins, D.Quintiere, J. G.Material fire properties and predictions for thermoplasticsFire Safety Journal 26 1996 241CrossRefGoogle Scholar
Greand, A. E.Wilkie, C. A.Fire Retardancy of Polymeric MaterialsNew YorkDekker 2000 245Google Scholar
Tewarson, A.Heat release rate in diffusion flamesThermochimica Acta 278 1996 19CrossRefGoogle Scholar
Schartel, B.Hull, T. R.Development of fire-retarded materials-interpretation of cone calorimeter dataFire and Materials 31 2007 327CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×