Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T18:35:51.076Z Has data issue: false hasContentIssue false

Chapter 4 - Thalamocortical Circuitry Matters

from Section 2: - Anatomy

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Once thought to be a simple relay, the thalamus is now seen as a more dynamic player in overall cortical functioning. Several relatively recent observations created led to this new understanding: (1) Glutamatergic inputs can be classified as drivers (e.g., main conveyors of information) or modulators. Most inputs in the thalamus and cortex are modulators, and identifying the driver subset has provided insights into thalamocortical circuit functioning. (2) Much of the modulator input to the thalamus relates to control of the response mode of relay cells–tonic or burst. Which mode operates at any time affects the significance of the message conveyed to the cortex. (3) We now appreciate that most of thalamus, called higher order (e.g., pulvinar and medial dorsal nucleus), serves as a central relay in a transthalamic corticocortical information route organized in parallel with direct connections. First-order nuclei (e.g., lateral geniculate and ventral posterior nuclei) instead relay peripheral information to the cortex. Thus, the thalamus not only provides a behaviorally relevant, dynamic control over the nature of the information relayed, but it also plays a key role in basic corticocortical communication. These findings are reviewed, along with speculations regarding the functional significance of transthalamic pathways.

Type
Chapter
Information
The Thalamus , pp. 71 - 90
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alitto, H., Rathbun, D. L., Vandeleest, J. J., Alexander, P. C., & Usrey, W. M. (2019). The augmentation of retinogeniculate communication during thalamic burst mode. Journal of Neuroscience, 39, 5710.CrossRefGoogle ScholarPubMed
Andolina, I. M., Jones, H. E., & Sillito, A. M. (2013). Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. Journal of Neurophysiology, 109, 889899.Google Scholar
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437443.Google Scholar
Basso, M. A., & May, P. J. (2017). Circuits for action and cognition: A view from the superior colliculus. Annual Review of Vision Science, 3, 197226.Google Scholar
Berman, R. A., & Wurtz, R. H. (2010). Functional identification of a pulvinar path from superior colliculus to cortical area MT. Journal of Neuroscience, 30, 63426354.CrossRefGoogle ScholarPubMed
Bezdudnaya, T., Cano, M., Bereshpolova, Y., Stoelzel, C. R., Alonso, J. M., & Swadlow, H. A. (2006). Thalamic burst mode and inattention in the awake LGNd. Neuron, 49, 421432.Google Scholar
Bickford, M. E., Zhou, N., Krahe, T. E., Govindaiah, G., & Guido, W. (2015). Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. Journal of Neuroscience, 35, 1052310534.Google Scholar
Bokor, H., Frere, S. G. A., Eyre, M. D., Slezia, A., Ulbert, I., Luthi, A., et al. (2005). Selective GABAergic control of higher-order thalamic relays. Neuron, 45, 929940.CrossRefGoogle ScholarPubMed
Bourassa, J., & Deschênes, M. (1995). Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253263.CrossRefGoogle ScholarPubMed
Bourassa, J., Pinault, D., & Deschênes, M. (1995). Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: A single-fibre study using biocytin as an anterograde tracer. European Journal of Neuroscience, 7, 1930.CrossRefGoogle Scholar
Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: variability and feedback control at single synapses. Nature Reviews Neuroscience, 10, 373383.Google Scholar
Briggs, F., Mangun, G. R., & Usrey, W. M. (2013). Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature, 499, 476480.CrossRefGoogle ScholarPubMed
Brown, D. A., Abogadie, F. C., Allen, T. G., Buckley, N. J., Caulfield, M. P., Delmas, P., Haley, J. E., Lamas, J. A., & Selyanko, A. A. (1997). Muscarinic mechanisms in nerve cells. Life Sciences, 60, 11371144.Google Scholar
Cajal, S. R. y. (1911). Histologie du Système Nerveaux de l’Homme et des Vertébrés. Paris: Maloine.Google Scholar
Chalk, M., Herrero, J. L., Gieselmann, M. A., Delicato, L. S., Gotthardt, S., & Thiele, A. (2010). Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1. Neuron, 66, 114125.Google Scholar
Cohen, M. R., & Maunsell, J. H. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience, 12, 15941600.CrossRefGoogle ScholarPubMed
Covic, E. N., & Sherman, S. M. (2011). Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cerebral Cortex, 21, 24252441.Google Scholar
Cox, C. L., Denk, W., Tank, D. W., & Svoboda, K. (2000). Action potentials reliably invade axonal arbors of rat neocortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 97249728.CrossRefGoogle ScholarPubMed
Crapse, T. B., & Sommer, M. A. (2008a). Corollary discharge across the animal kingdom. Nature Reviews Neuroscience, 9, 587600.Google Scholar
Crapse, T. B., & Sommer, M. A. (2008b). Corollary discharge circuits in the primate brain. Current Opinion in Neurobiology, 18, 552557.Google Scholar
Crunelli, V., & Leresche, N. (1991). A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends in Neurosciences, 14, 1621.CrossRefGoogle ScholarPubMed
Deleuze, C., David, F., Behuret, S., Sadoc, G., Shin, H. S., Uebele, V. N., et al. (2012). T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. Journal of Neuroscience, 32, 1222812236.CrossRefGoogle ScholarPubMed
DePasquale, R., & Sherman, S. M. (2011). Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. Journal of Neuroscience, 31, 1649416506.CrossRefGoogle Scholar
DePasquale, R., & Sherman, S. M. (2012). Modulatory effects of metabotropic glutamate receptors on local cortical circuits. Journal of Neuroscience, 32, 73647372.Google Scholar
DePasquale, R., & Sherman, S. M. (2013). A modulatory effect of the feedback from higher visual areas to V1 in the mouse. Journal of Neurophysiology, 109, 26182631.CrossRefGoogle Scholar
Deschênes, M., Bourassa, J., & Pinault, D. (1994). Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Research, 664, 215219.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Reviews in Neuroscience, 18, 193222.Google Scholar
Dittman, J. S., Kreitzer, A. C., & Regehr, W. G. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience, 20, 13741385.Google Scholar
Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18, 9951008.Google Scholar
Economo, M. N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563, 7984.CrossRefGoogle ScholarPubMed
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474480.Google Scholar
Gaither, N. S., & Stein, B. E. (1979). Reptiles and mammals use similar sensory organizations in the midbrain. Science, 205, 595597.CrossRefGoogle ScholarPubMed
Gilbert, C. D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology (London), 268, 391421.Google Scholar
Godwin, D. W., Vaughan, J. W., & Sherman, S. M. (1996). Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. Journal of Neurophysiology, 76, 18001816.Google Scholar
Groh, A., Bokor, H., Mease, R. A., Plattner, V. M., Hangya, B., Stroh, A., et al. (2013). Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cerebral Cortex, 24, 31673179.Google Scholar
Groh, A., Bokor, H., Mease, R. A., Plattner, V. M., Hangya, B., Stroh, A., et al. (2014). Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cerebral Cortex, 24, 31673179.Google Scholar
Guillery, R. W. (1995). Anatomical evidence concerning the role of the thalamus in corticocortical communication: A brief review. Journal of Anatomy, 187, 583592.Google Scholar
Guillery, R. W. (2003). Branching thalamic afferents link action and perception. Journal of Neurophysiology, 90, 539548.CrossRefGoogle ScholarPubMed
Guillery, R. W. (2005). Anatomical pathways that link action to perception. Progress in Brain Research, 149, 235256.Google Scholar
Gulcebi, M. I., Ketenci, S., Linke, R., Hacioglu, H., Yanali, H., Veliskova, J., et al. (2011). Topographical connections of the substantia nigra pars reticulata to higher-order thalamic nuclei in the rat. Brain Research Bulletin, 87, 312318.Google Scholar
Herman, J. P., Katz, L. N., & Krauzlis, R. J. (2018). Midbrain activity can explain perceptual decisions during an attention task. Nature Neuroscience, 21, 16511655.CrossRefGoogle ScholarPubMed
Hille, B. (1992). Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat’s lateral geniculate body. Journal of Physiology (London), 155, 385398.Google Scholar
Huguenard, J. R. (1996). Low-threshold calcium currents in central nervous system neurons. Annual Review of Physiology, 58, 329348.Google Scholar
Huguenard, J. R., & McCormick, D. A. (1994). Electrophysiology of the neuron. New York: Oxford: Oxford University Press.Google Scholar
Huguenard, J. R., & Prince, D. A. (1994). Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. Journal of Neurophysiology, 71, 25762581.Google Scholar
Isa, T., Kinoshita, M., & Nishimura, Y. (2013). Role of direct vs. indirect pathways from the motor cortex to spinal motoneurons in the control of hand dexterity. Frontiers in Neurology, 4, 191.Google Scholar
Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. Oxfrod: Oxford University Press.Google Scholar
Jahnsen, H., & Llinás, R. (1984a). Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. Journal of Physiology (London), 349, 205226.Google Scholar
Jahnsen, H., & Llinás, R. (1984b). Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. Journal of Physiology (London), 349, 227247.Google Scholar
Johnston, D., Magee, J. C., Colbert, C. M., & Christie, B. R. (1996). Active properties of neuronal dendrites. Annual Review of Neuroscience, 19, 165186.Google Scholar
Kelly, L. R., Li, J., Carden, W. B., & Bickford, M. E. (2003). Ultrastructure and synaptic targets of tectothalamic terminals in the cat lateral posterior nucleus. Journal of Comparative Neurology, 464, 472486.Google Scholar
Kim, H. R., Hong, S. Z., & Fiorillo, C. D. (2015). T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input. Frontiers in Cellular Neuroscience, 9, 428.Google Scholar
Kita, T., & Kita, H. (2012). The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. Journal of Neuroscience, 32, 59905999.Google Scholar
Krauzlis, R. J., Lovejoy, L. P., & Zenon, A. (2013). Superior colliculus and visual spatial attention. Annual Reviews in Neuroscience, 36, 165182.Google Scholar
Kuramoto, E., Fujiyama, F., Nakamura, K. C., Tanaka, Y., Hioki, H., & Kaneko, T. (2011). Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. European Journal of Neuroscience, 33, 95109.Google Scholar
Lam, Y. W., & Sherman, S. M. (2010). Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cerebral Cortex, 20, 1324.Google Scholar
Lam, Y. W., & Sherman, S. M. (2019). Convergent synaptic inputs to layer 1 cells of mouse cortex. European Journal of Neuroscience, 49, 1399.Google Scholar
Larkum, M. E., Senn, W., & Luscher, H. R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cerebral Cortex, 14, 10591070.Google Scholar
Larkum, M. E., Waters, J., Sakmann, B., & Helmchen, F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. Journal of Neuroscience, 27, 89999008.Google Scholar
Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398, 338341.Google Scholar
Lavallée, P., Urbain, N., Dufresne, C., Bokor, H., Acsády, L., & Deschênes, M. (2005). Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. Journal of Neuroscience, 25, 74897498.Google Scholar
Lee, C. C., & Sherman, S. M. (2008). Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. Journal of Neurophysiology, 100, 317326.Google Scholar
Lee, C. C., & Sherman, S. M. (2009). Modulator property of the intrinsic cortical projection from layer 6 to layer 4. Frontiers in Systems Neuroscience, 3, 15.Google Scholar
Lee, C. C., & Sherman, S. M. (2012). Intrinsic modulators of auditory thalamocortical transmission. Hearing Research, 287, 4350.Google Scholar
Lee, J., & Maunsell, J. H. R. (2010). Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. Journal of Neuroscience, 30, 30583066.Google Scholar
Levitan, I. B., & Kaczmarek, L. K. (2002). The neuron: Cell and molecular biology. New York: Oxford University Press.Google Scholar
Litvina, E. Y., & Chen, C. (2017). Functional convergence at the retinogeniculate synapse. Neuron, 96, 330338.Google Scholar
Llano, D. A., & Sherman, S. M. (2009). Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cerebral Cortex, 19, 28102826.CrossRefGoogle ScholarPubMed
Llinás, R. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system. Science, 242, 16541664.CrossRefGoogle ScholarPubMed
Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R., Somogyi, P. (1996). Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. European Journal of Neuroscience, 8, 14881500.Google Scholar
MacLean, J. N., Watson, B. O., Aaron, G. B., & Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron, 48, 811823.Google Scholar
Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neuroscience, 29, 317322.CrossRefGoogle ScholarPubMed
McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68, 13841400.Google Scholar
Miller-Hansen, A.J., and Sherman, S.M. (2022) Conserved patterns of functional organization between cortex and thalamus in mice. Proc. Natl. Acad. Sci. (USA), in press.Google Scholar
Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23, 216222.CrossRefGoogle ScholarPubMed
Mineault, P. J., Tring, E., Trachtenberg, J. T., & Ringach, D. L. (2016). Enhanced spatial resolution during locomotion and heightened attention in mouse primary visual cortex. Journal of Neuroscience, 36, 63826392.Google Scholar
Mo, C., & Sherman, S. M. (2019). A sensorimotor pathway via higher-order thalamus. Journal of Neuroscience, 39, 692704.Google Scholar
Mott, D. D., & Lewis, D. V. (1994). The pharmacology and function of central GABAB receptors. International Review of Neurobiology, 36, 97223.Google Scholar
Nicoll, R. A., Malenka, R. C., & Kauer, J. A. (1990). Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiology Review, 70, 513565.CrossRefGoogle ScholarPubMed
Nobre, K., Nobre, A., & Kastner, S. (2014). The Oxford handbook of attention. Oxford: Oxford University Press.Google Scholar
Osborne, L. C., Hohl, S. S., Bialek, W., & Lisberger, S. G. (2007). Time course of precision in smooth-pursuit eye movements of monkeys. Journal of Neuroscience, 27, 29872998.CrossRefGoogle ScholarPubMed
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Reviews in Neuroscience, 35, 7389.CrossRefGoogle ScholarPubMed
Petrof, I., Viaene, A. N., & Sherman, S. M. (2012). Synaptic properties of the lemniscal and paralemniscal somatosensory inputs to the mouse thalamus. Proceedings of the National Academy of Sciences of the United States of America, 114, E6212E6221.Google Scholar
Petrof, I., Viaene, A. N., & Sherman, S. M. (2015). Properties of the primary somatosensory cortex projection to the primary motor cortex in the mouse. Journal of Neurophysiology, 113, 2652.Google Scholar
Pin, J. P., & Duvoisin, R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology, 34, 126.Google Scholar
Posner, M. I. (2012). Cognitive neuroscience of attention. New York: Guilford Press.Google Scholar
Prasad, J. A., Carroll, B. J., & Sherman, S. M. (2020). Layer 5 corticofugal projections from diverse cortical areas: variations on a pattern of thalamic and extra-thalamic targets. Journal of Neuroscience, 40, 57855796.Google Scholar
Raastad, M., & Shepherd, G. M. (2003). Single-axon action potentials in the rat hippocampal cortex. Journal of Physiology, 548, 745752.Google Scholar
Ramcharan, E. J., Gnadt, J. W., & Sherman, S. M. (2005). Higher-order thalamic relays burst more than first-order relays. Proceedings of the National Academy of Sciences of the United States of America, 102, 1223612241.CrossRefGoogle ScholarPubMed
Rathelot, J. A., & Strick, P. L. (2009). Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 918923.Google Scholar
Recasens, M., & Vignes, M. (1995). Excitatory amino acid metabotropic receptor subtypes and calcium regulation. Annals of the New York Academy of Sciences, 757, 418429.Google Scholar
Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611647.Google Scholar
Sakai, S. T., Inase, M., & Tanji, J. (1996). Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study. Journal of Comparative Neurology, 368, 215228.Google Scholar
Sherman, S. M. (1996). Dual response modes in lateral geniculate neurons: mechanisms and functions. Visual Neuroscience, 13, 205213.Google Scholar
Sherman, S. M. (2001). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122126.Google Scholar
Sherman, S. M. (2005). Thalamic relays and cortical functioning. Progress in Brain Research, 149, 107126.Google Scholar
Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19, 533541.Google Scholar
Sherman, S. M., & Guillery, R. W. (1996). The functional organization of thalamocortical relays. Journal of Neurophysiology, 76, 13671395.Google Scholar
Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators.Proceedings of the National Academy of Sciences of the United States of America, 95, 71217126.Google Scholar
Sherman, S. M., & Guillery, R. W. (2006). Exploring the thalamus and its role in cortical function (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Sherman, S. M., & Guillery, R. W. (2013). Functional connections of cortical areas: a new view from the thalamus. Cambridge, MA: MIT Press.Google Scholar
Sherman, SM, Usrey, WM (2021) Cortical control of behavior and attention from an evolutionary perspective. Neuron 109:3048–3064.Google Scholar
Snutch, T. P., & Reiner, P. B. (1992). Ca2+ channels: Diversity of form and function. Current Opinion in Neurobiology, 2, 247253.Google Scholar
Soltész, I., Lightowler, S., Leresche, N., & Crunelli, V. (1989). On the properties and origin of the GABAB inhibitory postsynaptic potential recorded in morphologically identified projection cells of the cat dorsal lateral geniculate nucleus. Neuroscience, 33, 2333.Google Scholar
Sommer, M. A., & Wurtz, R. H. (2004). What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. Journal of Neurophysiology, 91, 14031423.Google Scholar
Sommer, M. A., & Wurtz, R. H. (2008). Brain circuits for the internal monitoring of movements. Annual Review of Neuroscience, 31, 317338.Google Scholar
Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative Neurology, 43, 482489.Google Scholar
Stein, B. E., & Gaither, N. S. (1983). Receptive-field properties in reptilian optic tectum: some comparisons with mammals. Journal of Neurophysiology, 50, 102124.Google Scholar
Stein, B. E., Stanford, T. R., & Rowland, B. A. (2009). The neural basis of multisensory integration in the midbrain: Its organization and maturation. Hearing Research, 258, 415.Google Scholar
Sur, M., Esguerra, M., Garraghty, P. E., Kritzer, M. F., & Sherman, S. M. (1987). Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. Journal of Neurophysiology, 58, 132.Google Scholar
Suzuki, D. G., Perez-Fernandez, J., Wibble, T., Kardamakis, A. A., & Grillner, S. (2019). The role of the optic tectum for visually evoked orienting and evasive movements. Proceedings of the National Academy of Sciences of the United States of America, 116, 1527215281.Google Scholar
Suzuki, M., & Larkum, M. E. (2020). General anesthesia decouples cortical pyramidal neurons. Cell, 180, 666676.Google Scholar
Swadlow, H. A., & Gusev, A. G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4, 402408.Google Scholar
Swadlow, H. A., Gusev, A. G., & Bezdudnaya, T. (2002). Activation of a cortical column by a thalamocortical impulse. Journal of Neuroscience, 22, 77667773.CrossRefGoogle ScholarPubMed
Tamamaki, N., Uhlrich, D. J., & Sherman, S. M. (1995). Morphology of physiologically identified retinal X and Y axons in the cat’s thalamus and midbrain as revealed by intra-axonal injection of biocytin. Journal of Comparative Neurology, 354, 583607.Google Scholar
Ulrich, D., Besseyrias, V., & Bettler, B. (2007). Functional mapping of GABA(B)-receptor subtypes in the thalamus. Journal of Neurophysiology, 98, 37913795.Google Scholar
Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82, 35273540.Google Scholar
Van Horn, S. C., Erisir, A., & Sherman, S. M. (2000). The relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 416, 509520.Google Scholar
Van Horn, S. C., & Sherman, S. M. (2007). Fewer driver synapses in higher order than in first order thalamic relays. Neuroscience, 475, 406415.Google Scholar
Varela, C., & Sherman, S. M. (2007). Differences in response to muscarinic agonists between first and higher order thalamic relays. Journal of Neurophysiology, 98, 35383547.Google Scholar
Varela, C., & Sherman, S. M. (2008). Differences in response to serotonergic activation between first and higher order thalamic nuclei. Cerebral Cortex, 19, 17761786.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2011a). Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 108, 1815618161.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2011b). Synaptic properties of thalamic input to layers 2/3 in primary somatosensory and auditory cortices. Journal of Neurophysiology, 105, 279292.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2011c). Synaptic properties of thalamic input to the subgranular layers of primary somatosensory and auditory cortices in the mouse. Journal of Neuroscience, 31, 1273812747.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2013). Activation requirements for metabotropic glutamate receptors. Neuroscience Letters, 541, 6772.Google Scholar
von Graefe, A. (1854). Beiträge zur Physiologie und Pathologie der schiefen Augenmuskeln. Archiv für Opthlalmologie, 1, 181.Google Scholar
von Holst, E., & Mittelstaedt, H. (1950). The reafference principle. Interaction between the central nervous system and the periphery. In Selected papers of Erich von Holst: The behavioural physiology of animals and man (Martin, R., Trans.; Vol. 1, pp. 139173). Coral Gables, FL: University of Miami Press.Google Scholar
Wang, L., & Krauzlis, R. J. (2018). Visual selective attention in mice. Current Biology, 28, 676685.Google Scholar
Wang, L., McAlonan, K., Goldstein, S., Gerfen, C. R., & Krauzlis, R. J. (2020). A causal role for mouse superior colliculus in visual perceptual decision-making. Journal of Neuroscience, 40, 37683782.CrossRefGoogle ScholarPubMed
Wang, S., Eisenback, M. A., & Bickford, M. E. (2002). Relative distribution of synapses in the pulvinar nucleus of the cat: Implications regarding the “driver/modulator” theory of thalamic function. Journal of Comparative Neurology, 454, 482494.Google Scholar
Wang, W., Jones, H. E., Andolina, I. M., Salt, T. E., & Sillito, A. M. (2006). Functional alignment of feedback effects from visual cortex to thalamus. Nature Neuroscience, 9, 13301336.Google Scholar
Wolpert, D. M., & Flanagan, J. R. (2010). Motor learning. Current Biology, 20, R467R472.Google Scholar
Wu, L. G., Borst, J. G., & Sakmann, B. (1998). R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proceedings of the National Academy of Sciences of the United States of America, 95, 47204725.Google Scholar
Zaborszky, L., Gombkoto, P., Varsanyi, P., Gielow, M. R., Poe, G., Role, L. W., et al. (2018). Specific basal forebrain-cortical cholinergic circuits coordinate cognitive operations. Journal of Neuroscience, 38, 94469458.Google Scholar
Zhan, X. J., Cox, C. L., Rinzel, J., & Sherman, S. M. (1999). Current clamp and modeling studies of low threshold calcium spikes in cells of the cat’s lateral geniculate nucleus. Journal of Neurophysiology, 81, 23602373.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×