Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T21:32:35.381Z Has data issue: false hasContentIssue false

Chapter 21 - A Dynamical Systems Perspective on Thalamic Circuit Function

from Section 9: - Computation

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

This chapter applies a perspective from biophysically grounded computational modeling to explore how the intrinsic properties of thalamic microcircuits support the computational roles that the thalamus plays in perceptual and cognitive functions. A key focus is on the modeling of neurophysiological activity in the thalamus as nonlinear dynamical systems. Dynamical modeling can give insight into thalamic function across levels of analysis, including cellular channel properties, synaptic plasticity, and anatomical connectivity. This chapter reviews how the interplay between cellular and circuit mechanisms supports thalamic contributions to neural oscillations, regulation of brain state, top-down attentional control of sensory processing, and other cognitive functions. Understanding circuit function through biophysically grounded computational modeling and dynamical systems perspectives can also provide insight into how cellular and synaptic alterations caused by pharmacology or disease can impair thalamic function.

Type
Chapter
Information
The Thalamus , pp. 401 - 415
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, L.F. (1997). Synaptic depression and cortical gain control. Science 275, 221224.CrossRefGoogle ScholarPubMed
Abbott, L.F. (2008). Theoretical neuroscience rising. Neuron 60, 489495.Google Scholar
Abbott, L.F., and Regehr, W.G. (2004). Synaptic computation. Nature 431, 796803.Google Scholar
Ahissar, E., and Oram, T. (2013). Thalamic relay or cortico-thalamic processing? Old question, new answers. Cerebral Cortex 25, 845848.Google Scholar
Ahrens, S., Jaramillo, S., Yu, K., Ghosh, S., Hwang, G.R., Paik, R., Lai, C., He, M., Huang, Z.J., and Li, B. (2015). ErbB4 regulation of a thalamic reticular nucleus circuit for sensory selection. Nature Neuroscience 18, 104–11.Google Scholar
Aizenberg, M., Rolón-Martínez, S., Pham, T., Rao, W., Haas, J.S., and Geffen, M.N. (2019). Projection from the amygdala to the thalamic reticular nucleus amplifies cortical sound responses. Cell Reports 28, 605–615.e4.CrossRefGoogle Scholar
Alitto, H., Rathbun, D.L., Vandeleest, J.J., Alexander, P.C., and Usrey, W.M. (2019). The augmentation of retinogeniculate communication during thalamic burst mode. Journal of Neuroscience 39, 56975710.Google Scholar
Barthó, P., Slézia, A., Mátyás, F., Faradzs-Zade, L., Ulbert, I., Harris, K.D., and Acsády, L. (2014). Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82, 13671379.Google Scholar
Bastos, A.M., Briggs, F., Alitto, H.J., Mangun, G.R., and Usrey, W.M. (2014). Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations. Journal of Neuroscience 34, 76397644.Google Scholar
Bazhenov, M., Timofeev, I., Steriade, M., and Sejnowski, T.J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. Journal of Neuroscience 22, 86918704.Google Scholar
Béhuret, S., Deleuze, C., and Bal, T. (2015). Corticothalamic synaptic noise as a mechanism for selective attention in thalamic neurons. Frontiers in Neural Circuits 9.CrossRefGoogle Scholar
Bourjaily, M.A., and Miller, P. (2012). Dynamic afferent synapses to decision-making networks improve performance in tasks requiring stimulus associations and discriminations. Journal of Neurophysiology 108, 513527.Google Scholar
Brown, J.W., Taheri, A., Kenyon, R.V., Berger-Wolf, T.Y., and Llano, D.A. (2020). Signal propagation via open-loop intrathalamic architectures: A computational model. eNeuro 7, ENEURO.0441–19.2020.Google Scholar
Bruno, R.M. (2006). Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312, 16221627.CrossRefGoogle ScholarPubMed
Burt, J.B., Demirtas¸, M., Eckner, W.J., Navejar, N.M., Ji, J.L., Martin, W.J., Bernacchia, A., Anticevic, A., and Murray, J.D. (2018). Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography. Nature Neuroscience 21, 12511259.Google Scholar
Carandini, M., and Ferster, D. (2000). Membrane potential and firing rate in cat primary visual cortex. Journal of Neuroscience 20, 470484.CrossRefGoogle ScholarPubMed
Castro-Alamancos, M.A. (1997). Short-term plasticity in thalamocortical pathways: Cellular mechanisms and functional roles. Reviews in the Neurosciences 8.Google Scholar
Clemente-Perez, A., Makinson, S.R., Higashikubo, B., Brovarney, S., Cho, F.S., Urry, A., Holden, S.S., Wimer, M., Dávid, C., Fenno, L.E., Acsády, L., Deisseroth, K., and Paz, J.T. (2017). Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Reports 19, 21302142.CrossRefGoogle ScholarPubMed
Contreras, D., Destexhe, A., Sejnowski, T.J., and Steriade, M. (1996). Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274, 771774.Google Scholar
Contreras, D., and Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. Journal of Neuroscience 15, 604622.Google Scholar
Cotillon-Williams, N., Huetz, C., Hennevin, E., and Edeline, J.M. (2008). Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons. Journal of Neurophysiology 99, 11371151.CrossRefGoogle ScholarPubMed
Coulon, P., and Landisman, C.E. (2017). The potential role of gap junctional plasticity in the regulation of state. Neuron 93, 12751295.Google Scholar
Crandall, S.R., Cruikshank, S.J., and Connors, B.W. (2015). A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron 86, 768782.Google Scholar
Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences of the United States of America 81, 45864590.Google Scholar
Cueni, L., Canepari, M., Luján, R., Emmenegger, Y., Watanabe, M., Bond, C.T., Franken, P., Adelman, J.P., and Lüthi, A. (2008). T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nature Neuroscience 11, 683692.CrossRefGoogle ScholarPubMed
Destexhe, A., Babloyantz, A., and Sejnowski, T.J. (1993). Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophysical Journal 65, 1538–52.Google Scholar
Destexhe, A., Bal, T., McCormick, D.A., and Sejnowski, T.J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology 76, 2049–70.CrossRefGoogle Scholar
Destexhe, A., Contreras, D., Sejnowski, T.J., and Steriade, M. (1994a). A model of spindle rhythmicity in the isolated thalamic reticular nucleus. Journal of Neurophysiology 72, 803–18.Google Scholar
Destexhe, A., Contreras, D., Sejnowski, T.J., and Steriade, M. (1994b). Modeling the control of reticular thalamic oscillations by neuromodulators. NeuroReport 5, 22172220.Google Scholar
Destexhe, A., Contreras, D., and Steriade, M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology 79, 9991016.Google Scholar
Destexhe, A., Contreras, D., Steriade, M., Sejnowski, T.J., and Huguenard, J.R. (1996). In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. Journal of Neuroscience 16, 169185.Google Scholar
Destexhe, A., McCormick, D.A., and Sejnowski, T.J. (1993). A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophysical Journal 65, 24732477.Google Scholar
Diaz-Quesada, M., Martini, F.J., Ferrati, G., Bureau, I., and Maravall, M. (2014). Diverse thalamocortical short-term plasticity elicited by ongoing stimulation. Journal of Neuroscience 34, 515526.Google Scholar
Dittman, J.S., Kreitzer, A.C., and Regehr, W.G. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience 20, 13741385.Google Scholar
Dong, P., Wang, H., Shen, X.F., Jiang, P., Zhu, X.T., Li, Y., Gao, J.H., Lin, S., Huang, Y., He, X.B., Xu, F.Q., Duan, S., Lian, H., Wang, H., Chen, J., and Li, X.M. (2019). A novel cortico-intrathalamic circuit for flight behavior. Nature Neuroscience 22, 941949.CrossRefGoogle ScholarPubMed
Fagerberg, L., Hallström, B.M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., Habuka, M., Tahmasebpoor, S., Danielsson, A., Edlund, K., Asplund, A., Sjöstedt, E., Lundberg, E., Szigyarto, C.A.K., Skogs, M., Takanen, J.O., Berling, H., Tegel, H., Mulder, J., Nilsson, P., Schwenk, J.M., Lindskog, C., Danielsson, F., Mardinoglu, A., Sivertsson, A., von Feilitzen, K., Forsberg, M., Zwahlen, M., Olsson, I., Navani, S., Huss, M., Nielsen, J., Ponten, F., and Uhlén, M. (2014). Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Molecular & Cellular Proteomics 13, 397406.Google Scholar
Fitzgibbon, T., Tevah, L.V., and Sefton, A.J. (1995). Connections between the reticular nucleus of the thalamus and pulvinar-lateralis posterior complex: A WGA-HRP study. Journal of Comparative Neurology 363, 489504.Google Scholar
Fortune, E.S., and Rose, G.J. (2001). Short-term synaptic plasticity as a temporal filter. Trends in Neurosciences 24, 381385.Google Scholar
Fuentealba, P., Crochet, S., Timofeev, I., Bazhenov, M., Sejnowski, T.J., and Steriade, M. (2004). Experimental evidence and modeling studies support a synchronizing role for electrical coupling in the cat thalamic reticular neurons in vivo. European Journal of Neuroscience 20, 111119.Google Scholar
Fuhrmann, G., Segev, I., Markram, H., and Tsodyks, M. (2002). Coding of temporal information by activity-dependent synapses. Journal of Neurophysiology 87, 140148.Google Scholar
Gabernet, L., Jadhav, S.P., Feldman, D.E., Carandini, M., and Scanziani, M. (2005). Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48, 315327.CrossRefGoogle ScholarPubMed
Galvan, A., Hu, X., Smith, Y., and Wichmann, T. (2016). Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. Journal of Neuroscience 36, 35193530.Google Scholar
Gentet, L.J., and Ulrich, D. (2003). Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats. Journal of Physiology 546, 801811.Google Scholar
Goldman, M.S., Maldonado, P., and Abbott, L.F. (2002). Redundancy reduction and sustained firing with stochastic depressing synapses. Journal of Neuroscience 22, 584591.CrossRefGoogle ScholarPubMed
Golomb, D., Wang, X.J., and Rinzel, J. (1996). Propagation of spindle waves in a thalamic slice model. Journal of Neurophysiology 75, 750769.Google Scholar
Gonzalo-Ruiz, A., and Lieberman, A. (1995). Topographic organization of projections from the thalamic reticular nucleus to the anterior thalamic nuclei in the rat. Brain Research Bulletin 37, 1735.Google Scholar
Granseth, B., Ahlstrand, E., and Lindström, S. (2002). Paired pulse facilitation of corticogeniculate EPSCs in the dorsal lateral geniculate nucleus of the rat investigated in vitro. Journal of Physiology 544, 477486.Google Scholar
Gu, Q.L., Lam, N.H., Halassa, M.M., and Murray, J.D. (2021). Computational circuit mechanisms underlying thalamic control of attention. bioRxiv 10.1101/2020.09.16.300749.Google Scholar
Halassa, M.M., and Acsády, L. (2016). Thalamic inhibition: diverse sources, diverse scales. Trends in Neurosciences 39, 680693.Google Scholar
Halassa, M.M., Chen, Z., Wimmer, R.D., Brunetti, P.M., Zhao, S., Zikopoulos, B., Wang, F., Brown, E.N., and Wilson, M.A. (2014). State-dependent architecture of thalamic reticular subnetworks. Cell 158, 808821.Google Scholar
Halassa, M.M., and Kastner, S. (2017). Thalamic functions in distributed cognitive control. Nature Neuroscience 20, 16691679.Google Scholar
Halassa, M.M., and Sherman, S.M. (2019). Thalamocortical circuit motifs: a general framework. Neuron 103, 762770.Google Scholar
Halassa, M.M., Siegle, J.H., Ritt, J.T., Ting, J.T., Feng, G., and Moore, C.I. (2011). Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience 14, 11181120.Google Scholar
Hale, P., Sefton, A., Baur, L., and Cottee, L. (1982). Interrelations of the rat’s thalamic reticular and dorsal lateral geniculate nuclei. Experimental Brain Research 45–45.Google Scholar
Hennig, M.H. (2013). Theoretical models of synaptic short term plasticity. Frontiers in Computational Neuroscience 7.Google Scholar
Hirai, D., Nakamura, K.C., ichi Shibata, K., Tanaka, T., Hioki, H., Kaneko, T., and Furuta, T. (2017). Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons. Brain Structure and Function 223, 851872.Google Scholar
Hirsch, J.A., Wang, X., Sommer, F.T., and Martinez, L.M. (2015). How inhibitory circuits in the thalamus serve vision. Annual Review of Neuroscience 38, 309329.Google Scholar
Hou, G., Smith, A.G., and Zhang, Z.W. (2016). Lack of intrinsic GABAergic connections in the thalamic reticular nucleus of the mouse. Journal of Neuroscience 36, 7246–52.Google Scholar
Huguenard, J., and Prince, D. (1992). A novel t-type current underlies prolonged Ca2+- dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. Journal of Neuroscience 12, 38043817.CrossRefGoogle ScholarPubMed
Huguenard, J.R., and McCormick, D.A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences 30, 350356.Google Scholar
Huntenburg, J.M., Bazin, P.L., and Margulies, D.S. (2018). Large-scale gradients in human cortical organization. Trends in Cognitive Sciences 22, 2131.Google Scholar
Isaacson, J.S., and Scanziani, M. (2011). How inhibition shapes cortical activity. Neuron 72, 231243.Google Scholar
Jackman, S.L., and Regehr, W.G. (2017). The mechanisms and functions of synaptic facilitation. Neuron 94, 447464.Google Scholar
Jahnsen, H., and Llinás, R. (1984). Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. Journal of Physiology 349, 205226.CrossRefGoogle ScholarPubMed
Jaramillo, J., Mejias, J.F., and Wang, X.J. (2019). Engagement of pulvino-cortical feedforward and feedback pathways in cognitive computations. Neuron 101, 321–336.e9.CrossRefGoogle ScholarPubMed
Jones, E.G. (1975). Some aspects of the organization of the thalamic reticular complex. Journal of Comparative Neurology 162, 285308.Google Scholar
Jones, E.G. (2012). The thalamus (Springer Science & Business Media).Google Scholar
Katzner, S., Busse, L., and Carandini, M. (2011). GABAA inhibition controls response gain in visual cortex. Journal of Neuroscience 31, 59315941.Google Scholar
Kim, U., Bal, T., and McCormick, D.A. (1995). Spindle waves are propagating synchronized oscillations in the ferret LGNd in vitro. Journal of Neurophysiology 74, 13011323.Google Scholar
Kimura, A. (2014). Diverse subthreshold cross-modal sensory interactions in the thalamic reticular nucleus: implications for new pathways of cross-modal attentional gating function. European Journal of Neuroscience 39, 14051418.Google Scholar
Kimura, A., Imbe, H., Donishi, T., and Tamai, Y. (2007). Axonal projections of single auditory neurons in the thalamic reticular nucleus: implications for tonotopy-related gating function and cross-modal modulation. European Journal of Neuroscience 26, 35243535.Google Scholar
Knudsen, E.I. (2018). Neural circuits that mediate selective attention: a comparative perspective. Trends in Neurosciences 41, 789805.Google Scholar
Krishnan, G.P., Chauvette, S., Shamie, I., Soltani, S., Timofeev, I., Cash, S.S., Halgren, E., and Bazhenov, M. (2016). Cellular and neurochemical basis of sleep stages in the thalamocortical network. eLife 5.CrossRefGoogle Scholar
Krol, A., Wimmer, R.D., Halassa, M.M., and Feng, G. (2018). Thalamic reticular dysfunction as a circuit endophenotype in neurodevelopmental disorders. Neuron 98, 282295.Google Scholar
Lam, Y.W., and Sherman, S.M. (2015). Functional topographic organization of the motor reticulothalamic pathway. Journal of Neurophysiology 113, 30903097.Google Scholar
Landisman, C.E. (2005). Long-term modulation of electrical synapses in the mammalian thalamus. Science 310, 18091813.Google Scholar
Landisman, C.E., and Connors, B.W. (2007). VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback. Cerebral Cortex 17, 28532865.Google Scholar
Landisman, C.E., Long, M.A., Beierlein, M., Deans, M.R., Paul, D.L., and Connors, B.W. (2002). Electrical synapses in the thalamic reticular nucleus. Journal of Neuroscience 22, 10021009.Google Scholar
Lee, J.H., Latchoumane, C.F.V., Park, J., Kim, J., Jeong, J., Lee, K.H., and Shin, H.S. (2019). The rostroventral part of the thalamic reticular nucleus modulates fear extinction. Nature Communications 10.CrossRefGoogle Scholar
Lee, S.C., Cruikshank, S.J., and Connors, B.W. (2010). Electrical and chemical synapses between relay neurons in developing thalamus. Journal of Physiology 588, 24032415.CrossRefGoogle ScholarPubMed
Lee, S.C., Patrick, S.L., Richardson, K.A., and Connors, B.W. (2014). Two functionally distinct networks of gap junction-coupled inhibitory neurons in the thalamic reticular nucleus. Journal of Neuroscience 34, 1317013182.Google Scholar
Lee, S.H., Govindaiah, G., and Cox, C.L. (2007). Heterogeneity of firing properties among rat thalamic reticular nucleus neurons. Journal of Physiology 582, 195208.Google Scholar
Lesica, N.A. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. Journal of Neuroscience 24, 1073110740.Google Scholar
Li, Y., Lopez-Huerta, V.G., Adiconis, X., Levandowski, K., Choi, S., Simmons, S.K., Arias-Garcia, M.A., Guo, B., Yao, A.Y., Blosser, T.R., Wimmer, R.D., Aida, T., Atamian, A., Naik, T., Sun, X., Bi, D., Malhotra, D., Hession, C.C., Shema, R., Gomes, M., Li, T., Hwang, E., Krol, A., Kowalczyk, M., Peça, J., Pan, G., Halassa, M.M., Levin, J.Z., Fu, Z., and Feng, G. (2020). Distinct subnetworks of the thalamic reticular nucleus. Nature 583, 819824.Google Scholar
Litwin-Kumar, A., Rosenbaum, R., and Doiron, B. (2016). Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. Journal of Neurophysiology 115, 13991409.Google Scholar
Liu, B.H., Li, Y.T., Ma, W.P., Pan, C.J., Zhang, L.I., and Tao, H.W. (2011). Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71, 542554.Google Scholar
Lo, F.S., and Sherman, S.M. (1994). Feedback inhibition in the cat’s lateral geniculate nucleus. Experimental Brain Research 100.Google Scholar
Long, M.A. (2004). Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. Journal of Neuroscience 24, 341349.Google Scholar
Lytton, W., Destexhe, A., and Sejnowski, T. (1996). Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70, 673684.Google Scholar
Marsat, G., and Maler, L. (2010). Neural heterogeneity and efficient population codes for communication signals. Journal of Neurophysiology 104, 25432555.Google Scholar
Martinez-Garcia, R.I., Voelcker, B., Zaltsman, J.B., Patrick, S.L., Stevens, T.R., Connors, B.W., and Cruikshank, S.J. (2020). Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature 583, 813818.Google Scholar
Masson, G.L., Masson, S.R.L., Debay, D., and Bal, T. (2002). Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417, 854858.Google Scholar
Matveev, V., and Wang, X.J. (2000). Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate?Cerebral Cortex 10, 11431153.Google Scholar
McAlonan, K., Cavanaugh, J., and Wurtz, R.H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391394.Google Scholar
McCormick, D.A., and Bal, T. (1997). Sleep and arousal: thalamocortical mechanisms. Annual Review of Neuroscience 20, 185215.CrossRefGoogle ScholarPubMed
McCormick, D.A., and Huguenard, J.R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology 68, 13841400.Google Scholar
McCormick, D.A., and Pape, H.C. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. Journal of Physiology 431, 291318.Google Scholar
Mease, R.A., Kuner, T., Fairhall, A.L., and Groh, A. (2017). Multiplexed spike coding and adaptation in the thalamus. Cell Reports 19, 11301140.Google Scholar
Mejías, J.F., and Torres, J.J. (2007). The role of synaptic facilitation in spike coincidence detection. Journal of Computational Neuroscience 24, 222234.Google Scholar
Murray, J.D., and Anticevic, A. (2017). Toward understanding thalamocortical dysfunction in schizophrenia through computational models of neural circuit dynamics. Schizophrenia Research 180, 7077.Google Scholar
Murray, J.D., Jaramillo, J., and Wang, X.J. (2017). Working memory and decision-making in a frontoparietal circuit model. Journal of Neuroscience 37, 1216712186.Google Scholar
Nakajima, M., and Halassa, M.M. (2017). Thalamic control of functional cortical connectivity. Current Opinion in Neurobiology 44, 127131.Google Scholar
Nakajima, M., Schmitt, L.I., and Halassa, M.M. (2019). Prefrontal cortex regulates sensory filtering through a basal ganglia-to-thalamus pathway. Neuron 103, 445–458.e10.Google Scholar
O’Connor, D.H., Fukui, M.M., Pinsk, M.A., and Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience 5, 12031209.Google Scholar
Ozeki, H., Finn, I.M., Schaffer, E.S., Miller, K.D., and Ferster, D. (2009). Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62, 578592.Google Scholar
Panzeri, S., Macke, J.H., Gross, J., and Kayser, C. (2015). Neural population coding: combining insights from microscopic and mass signals. Trends in Cognitive Sciences 19, 162172.Google Scholar
Pape, H.C. (1996). Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annual Review of Physiology 58, 299327.Google Scholar
Pham, T., and Haas, J.S. (2018). Electrical synapses between inhibitory neurons shape the responses of principal neurons to transient inputs in the thalamus: a modeling study. Scientific Reports 8.Google Scholar
Phillips, J.W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., Wang, L., Shields, B.C., Korff, W., Chandrashekar, J., Lemire, A.L., Mensh, B., Dudman, J.T., Nelson, S.B., and Hantman, A.W. (2019). A repeated molecular architecture across thalamic pathways. Nature Neuroscience 22, 1925–1935.Google Scholar
Pinault, D. (2004). The thalamic reticular nucleus: structure, function and concept. Brain Research Reviews 46, 131.Google Scholar
Pinault, D., and Deschênes, M. (1998a). Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. European Journal of Neuroscience 10, 34623469.Google Scholar
Pinault, D., and Deschênes, M. (1998b). Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. Journal of Comparative Neurology 391, 180203.Google Scholar
Porter, J.T., Johnson, C.K., and Agmon, A. (2001). Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. Journal of Neuroscience 21, 26992710.Google Scholar
Priebe, N.J., and Ferster, D. (2008). Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57, 482497.Google Scholar
Ramcharan, E.J., Gnadt, J.W., and Sherman, S.M. (2005). Higher-order thalamic relays burst more than first-order relays. Proceedings of the National Academy of Sciences of the United States of America 102, 1223612241.Google Scholar
Reinagel, P., Godwin, D., Sherman, S.M., and Koch, C. (1999). Encoding of visual information by LGN bursts. Journal of Neurophysiology 81, 25582569.Google Scholar
Reinhold, K., Lien, A.D., and Scanziani, M. (2015). Distinct recurrent versus afferent dynamics in cortical visual processing. Nature Neuroscience 18, 17891797.Google Scholar
Rikhye, R.V., Wimmer, R.D., and Halassa, M.M. (2018). Toward an integrative theory of thalamic function. Annual Review of Neuroscience 41, 163183.CrossRefGoogle ScholarPubMed
Ritter-Makinson, S., Clemente-Perez, A., Higashikubo, B., Cho, F.S., Holden, S.S., Bennett, E., Chkhaidze, A., Rooda, O.H.E., Cornet, M.C., Hoebeek, F.E., Yamakawa, K., Cilio, M.R., Delord, B., and Paz, J.T. (2019). Augmented reticular thalamic bursting and seizures in Scn1a-Dravet syndrome. Cell Reports 26, 54–64.e6.Google Scholar
Roberts, J.A., and Robinson, P.A. (2012). Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 85, 011910.Google Scholar
Rodenkirch, C., Liu, Y., Schriver, B.J., and Wang, Q. (2019). Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nature Neuroscience 22, 120133.Google Scholar
Rosenbaum, R., Rubin, J., and Doiron, B. (2012). Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS Computational Biology 8, e1002557.Google Scholar
Rosenbaum, R., Rubin, J.E., and Doiron, B. (2013). Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations. Journal of Neurophysiology 109, 475484.Google Scholar
Rovó, Z., Ulbert, I., and Acsády, L. (2012). Drivers of the primate thalamus. Journal of Neuroscience 32, 1789417908.Google Scholar
Saalmann, Y.B., and Kastner, S. (2011). Cognitive and perceptual functions of the visual thalamus. Neuron 71, 209223.Google Scholar
Saleem, A.B., Lien, A.D., Krumin, M., Haider, B., Rosón, M.R., Ayaz, A., Reinhold, K., Busse, L., Carandini, M., and Harris, K.D. (2017). Subcortical source and modulation of the narrowband gamma oscillation in mouse visual cortex. Neuron 93, 315322.Google Scholar
Sanzeni, A., Akitake, B., Goldbach, H.C., Leedy, C.E., Brunel, N., and Histed, M.H. (2020). Inhibition stabilization is a widespread property of cortical networks. eLife 9.Google Scholar
Scheibel, A.B. (1997). The thalamus and neuropsychiatric illness. Journal of Neuropsychiatry and Clinical Neurosciences 9, 342353.Google Scholar
Schmitt, L.I., Wimmer, R.D., Nakajima, M., Happ, M., Mofakham, S., and Halassa, M.M. (2017). Thalamic amplification of cortical connectivity sustains attentional control. Nature 545, 219223.Google Scholar
Sherman, S. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences 24, 122126.Google Scholar
Sherman, S.M. (2012). Thalamocortical interactions. Current Opinion in Neurobiology 22, 575579.Google Scholar
Sherman, S.M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience 19, 533541.Google Scholar
Sherman, S.M., and Guillery, R.W. (1996). Functional organization of thalamocortical relays. Journal of Neurophysiology 76, 13671395.Google Scholar
Shosaku, A. (1986). Cross-correlation analysis of a recurrent inhibitory circuit in the rat thalamus. Journal of Neurophysiology 55, 10301043.Google Scholar
Shosaku, A., Kayama, Y., Sumitomo, I., Sugitani, M., and Iwama, K. (1989). Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of the thalamic reticular nucleus. Progress in Neurobiology 32, 77102.Google Scholar
Sohal, V.S., and Huguenard, J.R. (1998). Long-range connections synchronize rather than spread intrathalamic oscillations: computational modeling and in vitro electrophysiology. Journal of Neurophysiology 80, 17361751.Google Scholar
Soto-Sánchez, C., Wang, X., Vaingankar, V., Sommer, F.T., and Hirsch, J.A. (2017). Spatial scale of receptive fields in the visual sector of the cat thalamic reticular nucleus. Nature Communications 8, 800.Google Scholar
Steriade, M., Domich, L., Oakson, G., and Deschênes, M. (1987). The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology 57, 260273.Google Scholar
Steriade, M., McCormick, D., and Sejnowski, T. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679685.Google Scholar
Steriade, M., Nunez, A., and Amzica, F. (1993). Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience 13, 32663283.Google Scholar
Swadlow, H.A., and Gusev, A.G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience 4, 402408.Google Scholar
Tarasenko, A.N., Kostyuk, P.G., Eremin, A.V., and Isaev, D.S. (1997). Two types of low-voltage-activated Ca2+ channels in neurones of rat laterodorsal thalamic nucleus. Journal of Physiology 499, 7786.Google Scholar
Temereanca, S., Brown, E.N., and Simons, D.J. (2008). Rapid changes in thalamic firing synchrony during repetitive whisker stimulation. Journal of Neuroscience 28, 1115311164.Google Scholar
Tian, Y., Margulies, D.S., Breakspear, M., and Zalesky, A. (2020). Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nature Neuroscience 23, 14211432.Google Scholar
Timofeev, I., Bazhenov, M., Seigneur, J., and Sejnowski, T. (2012). Neuronal synchronization and thalamocortical rhythms in sleep, wake and epilepsy. In Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., and Delgado-Escueta, A.V., eds.,Jasper’s basic mechanisms of the epilepsies [Internet], 4th ed. (National Center for Biotechnology Information).Google Scholar
Timofeev, I., Bonjean, M.E., and Bazhenov, M. (2020).Cellular mechanisms of thalamocortical oscillations in the sleeping brain (Springer).Google Scholar
Timofeev, I., and Steriade, M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of Neurophysiology 76, 41524168.Google Scholar
Tottene, A., Favero, M., and Pietrobon, D. (2019). Enhanced thalamocortical synaptic transmission and dysregulation of the excitatory–inhibitory balance at the thalamocortical feedforward inhibitory microcircuit in a genetic mouse model of migraine. Journal of Neuroscience 39, 98419851.Google Scholar
Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau, F.E.N., Roopun, A., Bibbig, A., Wilent, W.B., Higley, M.J., and Whittington, M.A. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology 93, 21942232.Google Scholar
Tsodyks, M., Pawelzik, K., and Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation 10, 821835.Google Scholar
Tsodyks, M., and Wu, S. (2013). Short-term synaptic plasticity. Scholarpedia 8, 3153. Revision #182521.Google Scholar
Urbain, N., Salin, P.A., Libourel, P.A., Comte, J.C., Gentet, L.J., and Petersen, C.C. (2015). Whisking-related changes in neuronal firing and membrane potential dynamics in the somatosensory thalamus of awake mice. Cell Reports 13, 647656.Google Scholar
Usrey, W.M., and Sherman, S.M. (2018). Corticofugal circuits: communication lines from the cortex to the rest of the brain. Journal of Comparative Neurology 527, 640650.Google Scholar
Vantomme, G., Rovó, Z., Cardis, R., Béard, E., Katsioudi, G., Guadagno, A., Perrenoud, V., Fernandez, L.M.J., and Lüthi, A. (2020). A thalamic reticular circuit for head direction cell tuning and spatial navigation. Cell Reports 31, 107747.Google Scholar
Viaene, A.N., Petrof, I., and Sherman, S.M. (2011). Synaptic properties of thalamic input to layers 2/3 and 4 of primary somatosensory and auditory cortices. Journal of Neurophysiology 105, 279292.Google Scholar
Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F.T., and Hirsch, J.A. (2007). Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron 55, 465478.Google Scholar
Wang, X.J. (2020).Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nature Reviews Neuroscience 21, 169178.Google Scholar
Wang, X.J., Golomb, D., and Rinzel, J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America 92, 55775581.Google Scholar
Wei, H., Bonjean, M., Petry, H.M., Sejnowski, T.J., and Bickford, M.E. (2011). Thalamic burst firing propensity: a comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew. Journal of Neuroscience 31, 1728717299.Google Scholar
Wells, M.F., Wimmer, R.D., Schmitt, L.I., Feng, G., and Halassa, M.M. (2016). Thalamic reticular impairment underlies attention deficit in Ptchd1Y/− mice. Nature 532, 5863.Google Scholar
Wester, J.C., and Contreras, D. (2013). Differential modulation of spontaneous and evoked thalamocortical network activity by acetylcholine level in vitro. Journal of Neuroscience 33, 1795117966.Google Scholar
Whitmire, C.J., Waiblinger, C., Schwarz, C., and Stanley, G.B. (2016). Information coding through adaptive gating of synchronized thalamic bursting. Cell Reports 14, 795807.Google Scholar
Willis, A.M., Slater, B.J., Gribkova, E.D., and Llano, D.A. (2015). Open-loop organization of thalamic reticular nucleus and dorsal thalamus: a computational model. Journal of Neurophysiology 114, 23532367.Google Scholar
Wimmer, R.D., Schmitt, L.I., Davidson, T.J., Nakajima, M., Deisseroth, K., and Halassa, M.M. (2015). Thalamic control of sensory selection in divided attention. Nature 526, 705709.Google Scholar
Wolfart, J., Debay, D., Masson, G.L., Destexhe, A., and Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience 8, 17601767.Google Scholar
Yang, S., Meng, Y., Li, J., Li, B., Fan, Y.S., Chen, H., and Liao, W. (2020). The thalamic functional gradient and its relationship to structural basis and cognitive relevance. NeuroImage 218, 116960.Google Scholar
Zeldenrust, F., Wadman, W.J., and Englitz, B. (2018). Neural coding with bursts—current state and future perspectives. Frontiers in Computational Neuroscience 12.Google Scholar
Zikopoulos, B., and Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience 26, 73487361.Google Scholar
Zikopoulos, B., and Barbas, H. (2012). Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. Journal of Neuroscience 32, 53385350.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×