Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T18:28:37.995Z Has data issue: false hasContentIssue false

Section 8: - Arousal

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Thalamus , pp. 361 - 400
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abrams, J. K., Johnson, P. L., Hollis, J. H., & Lowry, C. A. (2004). Anatomic and functional topography of the dorsal raphe nucleus. Annals of the New York Academy of Sciences, 1018, 4657. https://doi.org/10.1196/annals.1296.005CrossRefGoogle ScholarPubMed
Adamantidis, A. R., Gutierrez Herrera, C., & Gent, T. C. (2019). Oscillating circuitries in the sleeping brain. Nature Reviews Neuroscience, 20(12), 746762. https://doi.org/10.1038/s41583-019-0223-4CrossRefGoogle ScholarPubMed
Alkire, M., Hudetz, A., & Tononi, G. (2008). Consciousness and anesthesia. Science, 322(November), 139152. https://doi.org/10.1016/B978-0-12-800948-2.00009-1CrossRefGoogle ScholarPubMed
Alkire, M. T., Asher, C. D., Franciscus, A. M., & Hahn, E. L. (2009). Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology, 110(4), 766773. https://doi.org/10.1097/ALN.0b013e31819c461cGoogle Scholar
Alkire, M. T., McReynolds, J. R., Hahn, E. L., & Trivedi, A. N. (2007). Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology, 107(2), 264272. https://doi.org/10.1097/01.anes.0000270741.33766.24Google Scholar
Anaclet, C., Griffith, K., & Fuller, P. M. (2018). Activation of the GABAergic parafacial zone maintains sleep and counteracts the wake-promoting action of the psychostimulants armodafinil and caffeine. Neuropsychopharmacology, 43(2), 415425. https://doi.org/10.1038/npp.2017.152CrossRefGoogle ScholarPubMed
Anaclet, C., Pedersen, N. P., Ferrari, L. L., Venner, A., Bass, C. E., Arrigoni, E., & Fuller, P. M. (2015). Basal forebrain control of wakefulness and cortical rhythms. Nature Communications, 6, 114. https://doi.org/10.1038/ncomms9744CrossRefGoogle ScholarPubMed
Anafi, R. C., Kayser, M. S., & Raizen, D. M. (2019). Exploring phylogeny to find the function of sleep. Nature Reviews Neuroscience, 20(2), 109116. https://doi.org/10.1038/s41583-018-0098-9Google Scholar
Anderson, M. P., Mochizuki, T., Xie, J., Fischler, W., Manger, J. P., Talley, E. M., Scammell, T. E., & Tonegawa, S. (2005). Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 17431748.Google Scholar
Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 403450. https://doi.org/10.1146/annurev.neuro.28.061604.135709CrossRefGoogle ScholarPubMed
Astori, S., & Lüthi, A. (2013). Synaptic plasticity at intrathalamic connections via CaV3.3 T-type Ca2+ channels and GluN2B-containing NMDA receptors. Journal of Neuroscience, 33(2), 624630. https://doi.org/10.1523/JNEUROSCI.3185-12.2013CrossRefGoogle ScholarPubMed
Astori, S., Wimmer, R. D., Prosser, H. M., Corti, C., Corsi, M., & Liaudet, N. (2011). The CaV3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 1382313828. https://doi.org/10.1073/pnas.1105115108Google Scholar
Aton, S. J., Suresh, A., Broussard, C., & Frank, M. G. (2014). Sleep promotes cortical response potentiation following visual experience. Sleep, 37(7), 11631170. https://doi.org/10.5665/sleep.3830CrossRefGoogle ScholarPubMed
Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Smith, P. J. P., & Woolrich, M. (2014). Fast transient networks in spontaneous human brain activity. eLife, 2014(3), 118. https://doi.org/10.7554/eLife.01867Google Scholar
Bal, T., von Krosigk, M., & McCormick, D. A. (1995). Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. Journal of Physiology, 483(3), 665685. https://doi.org/10.1113/jphysiol.1995.sp020613Google Scholar
Bandarabadi, M., Boyce, R., Herrera, C. G., Bassetti, C. L., Williams, S., Schindler, K., & Adamantidis, A. (2019). Dynamic modulation of theta-gamma coupling during rapid eye movement sleep. Sleep, 42(12), 111. https://doi.org/10.1093/sleep/zsz182Google Scholar
Bandarabadi, M., Herrera, C. G., Gent, T. C., Bassetti, C., Schindler, K., & Adamantidis, A. R. (2020). A role for spindles in the onset of rapid eye movement sleep. Nature Communications, 11(5247). https://doi.org/10.1038/s41467-020-19076-2CrossRefGoogle ScholarPubMed
Bassetti, C. L. (2005). Sleep and stroke. Seminars in Neurology, 25. https://doi.org/10.1016/B978-0-12-804074-4.00006-6Google Scholar
Bassetti, C., Mathis, J., Gugger, M., Lovblad, K., & Hess, C. W. (1996). Hypersomnia following paramedian thalamic stroke: a report of 12 patients. Annals of Neurology, 39, 471480.Google Scholar
Benson, K. L. (2015). Sleep in schizophrenia: pathology and treatment. Sleep Medicine Clinics, 10(1), 4955. https://doi.org/10.1016/j.jsmc.2014.11.001CrossRefGoogle ScholarPubMed
Bergel, A., Deffieux, T., Demené, C., Tanter, M., & Cohen, I. (2018). Local hippocampal fast gamma rhythms precede brain-wide hyperemic patterns during spontaneous rodent REM sleep. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-07752-3Google Scholar
Blethyn, K. L., Hughes, S. W., Tóth, T. I., Cope, D. W., & Crunelli, V. (2006). Neuronal basis of the slow (< Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. Journal of Neuroscience, 26(9), 24742486. https://doi.org/10.1523/JNEUROSCI.3607-05.2006Google Scholar
Bonjean, M., Baker, T., Lemieux, M., Timofeev, I., Sejnowski, T., & Bazhenov, M. (2011). Corticothalamic feedback controls sleep spindle duration in vivo. Journal of Neuroscience, 31(25), 91249134. https://doi.org/10.1523/JNEUROSCI.0077-11.2011Google Scholar
Boucetta, S., Cisse, Y., Mainville, L., Morales, M., & Jones, B. E. (2014). Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. Journal of Neuroscience, 34(13), 47084727. https://doi.org/10.1523/JNEUROSCI.2617-13.2014Google Scholar
Broicher, T., Wettschureck, N., Munsch, T., Coulon, P., Meuth, S. G., Kanyshkova, T., Seidenbecher, T., Offermanns, S., Pape, H. C., & Budde, T. (2008). Muscarinic ACh receptor-mediated control of thalamic activity via G q/G11-family G-proteins. Pflugers Archive European Journal of Physiology, 456(6), 10491060. https://doi.org/10.1007/s00424-008-0473-xCrossRefGoogle Scholar
Brown, E. N., Lydic, R., & Schiff, N. D. (2018). General anesthesia, sleep, and coma. New England Journal of Medicine, 363(27), 26382650. https://doi.org/10.1001/jama.306.20.2283Google Scholar
Campbell, S. S., & Tobler, I. (1984). Animal sleep: a review of sleep duration across phylogeny. Neuroscience and Biobehavioral Reviews, 8(3), 269300. https://doi.org/10.1016/0149-7634(84)90054-XGoogle Scholar
Chapin, E. M., & Andrade, R. (2001). A 5-HT7 receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current Ih. Journal of Pharmacology and Experimental Therapeutics, 297(1), 403409.Google Scholar
Chauvette, S., Seigneur, J., & Timofeev, I. (2012). Sleep Oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron, 75(6), 11051113. https://doi.org/10.1016/j.neuron.2012.08.034CrossRefGoogle ScholarPubMed
Chen, K. S., Xu, M., Zhang, Z., Chang, W. C., Gaj, T., Schaffer, D. V., & Dan, Y. (2018). A hypothalamic switch for REM and non-REM sleep. Neuron, 97(5), 1168–1176.e4. https://doi.org/10.1016/j.neuron.2018.02.005Google Scholar
Chung, S., Weber, F., Zhong, P., Tan, C. L., Nguyen, T. N., Beier, K. T., Hörmann, N., Chang, W. C., Zhang, Z., Do, J. P., Yao, S., Krashes, M. J., Tasic, B., Cetin, A., Zeng, H., Knight, Z. A., Luo, L., & Dan, Y. (2017). Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature, 545(7655), 477481. https://doi.org/10.1038/nature22350CrossRefGoogle ScholarPubMed
Churgin, M. A., Szuperak, M., Davis, K. C., Raizen, D. M., Fang-Yen, C., & Kayser, M. S. (2019). Quantitative imaging of sleep behavior in Caenorhabditis elegans and larval Drosophila melanogaster. Nature Protocols, 14(5), 15551588. https://doi.org/10.1038/s41596-019-0146-6Google Scholar
Clark, M., McDevitt, R., & Neumaier, J. (2006). Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. Journal of Comparative Neurology, 498(5), 611623. https://doi.org/10.1002/cneGoogle Scholar
Colangelo, C., Shichkova, P., Keller, D., & Markram, H. (2019). Cellular, synaptic and network effects of acetylcholine in the neocortex. Frontiers in Neural Circuits, 13, 24. https://doi.org/10.3389/fncir.2019.00024CrossRefGoogle ScholarPubMed
Contreras, D., Dossi, R. C., & Steriade, M. (1992). Bursting and tonic discharges in two classes of reticular thalamic neurons. Journal of Neurophysiology, 68(3), 973977. https://doi.org/10.1152/jn.1992.68.3.973Google Scholar
Crandall, S. R., Govindaiah, G., & Cox, C. L. (2010). Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. Journal of Neuroscience, 30(46), 1541915429. https://doi.org/10.1523/JNEUROSCI.3636-10.2010Google Scholar
Crunelli, V., & Hughes, S. W. (2010). The slow (1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nature Neuroscience, 13(1), 917. https://doi.org/10.1038/nn.2445Google Scholar
Crunelli, V., Larincz, M. L., Connelly, W. M., David, F., Hughes, S. W., Lambert, R. C., Leresche, N., & Errington, A. C. (2018). Dual function of thalamic low-vigilance state oscillations: rhythm-regulation and plasticity. Nature Reviews Neuroscience, 19(2), 107118. https://doi.org/10.1038/nrn.2017.151Google Scholar
Cueni, L., Canepari, M., Lujan, R., Emmenegger, Y., Watanabe, M., Bond, C. T., Franken, P., Adelman, J. P., & Luthi, A. (2008). T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nature Neuroscience, 11(6), 683692. https://doi.org/10.1038/nn.2124Google Scholar
Curró Dossi, R., Pare, D., & Steriade, M. (1991). Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. Journal of Neurophysiology, 65(3), 393406. https://doi.org/10.1152/jn.1991.65.3.393Google Scholar
Dahan, L., Astier, B., Vautrelle, N., Urbain, N., Kocsis, B., & Chouvet, G. (2007). Prominent burst firing of dopaminergic neurons in the ventral tegmental area during paradoxical sleep. Neuropsychopharmacology, 32, 12321241. https://doi.org/10.1038/sj.npp.1301251CrossRefGoogle ScholarPubMed
Dang-vu, T. T., Buxton, O. M., & Solet, J. M. (2010). Spontaneous brain rhythms predict sleep stability in the face of noise. Current Biology, 20(15), 626627. https://doi.org/10.1016/j.cub.2010.06.032Google Scholar
David, F., Schmiedt, J. T., Taylor, H. L., Orban, G., Di Giovanni, G., Uebele, V. N., Renger, J. J., Lambert, R. C., Leresche, N., & Crunelli, V. (2013). Essential thalamic contribution to slow waves of natural sleep. Journal of Neuroscience, 33(50), 1959919610. https://doi.org/10.1523/JNEUROSCI.3169-13.2013Google Scholar
De-miguel, F. F., Leon-pinzon, C., Noguez, P., & Mendez, B. (2015). Serotonin release from the neuronal cell body and its long-lasting effects on the nervous system. Philosophical Transactions of the Royal Society B, 370(1672).Google Scholar
Deschfines, M., Paradis, M., Roy, J. P., & Steriade, M. (1984). Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. Journal of Neurophysiology, 51(6), 11961219.Google Scholar
Destexhe, A., Hughes, S. W., Rudolph, M., & Crunelli, V. (2007). Are corticothalamic “up” states fragments of wakefulness? Trends in Neurosciences, 30(7), 334342. https://doi.org/10.1016/j.tins.2007.04.006CrossRefGoogle ScholarPubMed
Devilbiss, D. M., & Waterhouse, B. D. (2011). Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat. Journal of Neurophysiology, 105(1), 6987. https://doi.org/10.1152/jn.00445.2010Google Scholar
Durkin, J., Suresh, A. K., Colbath, J., Broussard, C., Wu, J., Zochowski, M., & Aton, S. J. (2017). Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity. Proceedings of the National Academy of Sciences of the United States of America, 114(39), 1048510490. https://doi.org/10.1073/pnas.1710613114Google Scholar
Eban-Rothschild, A., Rothschild, G., Giardino, W. J., Jones, J. R., & De Lecea, L. (2016). VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nature Neuroscience, 19(10), 13561366. https://doi.org/10.1038/nn.4377Google Scholar
Economo, M. N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L. T., Nguyen, T. N., Smith, K. A., Yao, Z., Wang, L., Gerfen, C. R., Chandrashekar, J., Zeng, H., Looger, L. L., & Svoboda, K. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563(7729), 7984. https://doi.org/10.1038/s41586-018-0642-9Google Scholar
El Mansari, M., Sakai, K., & Jouvet, M. (1989). Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Experimental Brain Research, 76(3), 519529. https://doi.org/10.1007/BF00248908Google Scholar
Errington, A. C., Renger, J. J., Uebele, V. N., & Crunelli, V. (2010). State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. Journal of Neuroscience, 30(44), 1484314853. https://doi.org/10.1523/JNEUROSCI.2968-10.2010CrossRefGoogle ScholarPubMed
Eschenko, O., Magri, C., Panzeri, S., & Sara, S. J. (2012). Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cerebral Cortex, 22, 426435. https://doi.org/10.1093/cercor/bhr121Google Scholar
Favero, M., Varghese, G., & Castro-Alamancos, M. A. (2012). The state of somatosensory cortex during neuromodulation. Journal of Neurophysiology, 108(4), 10101024. https://doi.org/10.1152/jn.00256.2012CrossRefGoogle ScholarPubMed
Fernandez, L. M. J., Vantomme, G., Osorio-Forero, A., Cardis, R., Béard, E., & Lüthi, A. (2018). Thalamic reticular control of local sleep in mouse sensory cortex. eLife, 7, 125. https://doi.org/10.7554/eLife.39111Google Scholar
Ferrarelli, F., & Tononi, G. (2017). Reduced sleep spindle activity point to a TRN-MD thalamus-PFC circuit dysfunction in schizophrenia. Schizophrenia Research, 180, 3643. https://doi.org/10.1016/j.schres.2016.05.023Google Scholar
Fort, P., Bassetti, C. L., & Luppi, P. H. (2009). Alternating vigilance states: new insights regarding neuronal networks and mechanisms. European Journal of Neuroscience, 29(9), 17411753. https://doi.org/10.1111/j.1460-9568.2009.06722.xGoogle Scholar
Francesconi, W., Muller, C. M., & Singer, W. (1988). Cholinergic mechanisms in the reticular control of transmission in the cat lateral geniculate nucleus. Journal of Neurophysiology, 59(6), 16901718. https://doi.org/10.1152/jn.1988.59.6.1690Google Scholar
Fuller, P., Sherman, D., Pedersen, N. P., Saper, C. B., & Lu, J. (2011). Reassessment of the structural basis of the ascending arousal system. Journal of Comparative Neurology, 519(5), 933956. https://doi.org/10.1002/cne.22559Google Scholar
Gazea, M., Furdan, S., Sere, P., Oesch, L., Molnár, B., Giovanni, G. Di, Fenno, L. E., Ramakrishnan, C., Mattis, J., Deisseroth, K., Dymecki, S. M., Adamantidis, A. R., & Lőrincz, M. L. (2021). Reciprocal lateral hypothalamic and raphe GABAergic projections promote wakefulness. Journal of Neuroscience, 41(22), 48404849. https://doi.org/10.1523/JNEUROSCI.2850-20.2021Google Scholar
Gent, T. C., Bandarabadi, M., Herrera, C. G., & Adamantidis, A. R. (2018). Thalamic dual control of sleep and wakefulness. Nature Neuroscience, 21(7), 974984. https://doi.org/10.1038/s41593-018-0164-7CrossRefGoogle ScholarPubMed
Gent, T. C., Bassetti, C. L. A., & Adamantidis, A. R. (2018). Sleep-wake control and the thalamus. Current Opinion in Neurobiology, 52, 188197. https://doi.org/10.1016/j.conb.2018.08.002CrossRefGoogle ScholarPubMed
Glin, L., Arnaud, C., Berracochea, D., Galey, D., Jaffard, R., & Gottesmann, C. (1991). The intermediate stage of sleep in mice. Physiology and Behavior, 50(5), 951953. https://doi.org/10.1016/0031–9384(91)90420-SGoogle Scholar
Guilleminault, C., Quera-salva, M. A., & Goldberg, M. P. (1993). Pseudo-hypersomnia and pre-sleep behaviour with bilateral paramedian thalamic lesions. Brain, 116(6), 15491563. https://doi.org/10.1093/brain/116.6.1549CrossRefGoogle ScholarPubMed
Halassa, M. M., & Kastner, S. (2017). Thalamic functions in distributed cognitive control. Nature Neuroscience, 20(12), 16691679. https://doi.org/10.1038/s41593-017-0020-1Google Scholar
Halassa, M. M., Siegle, J. H., Ritt, J. T., Ting, J. T., Feng, G., & Moore, C. I. (2011). Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nature Neuroscience, 14(9), 11181120. https://doi.org/10.1038/nn.2880Google Scholar
Hassani, O. K., Henny, P., Lee, M. G., & Jones, B. E. (2010). GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. European Journal of Neuroscience, 32(3), 448457. https://doi.org/10.1111/j.1460-9568.2010.07295.xGoogle Scholar
Hassani, O. K., Lee, M. G., & Jones, B. E. (2009). Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proceedings of the National Academy of Sciences of the United States of America, 106(7), 24182422. https://doi.org/10.1073/pnas.0811400106CrossRefGoogle Scholar
Hayashi, Y., Kashiwagi, M., Yasuda, K., Ando, R., Kanuka, M., Sakai, K., & Itohara, S. (2015). Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science, 350(6263), 957962.Google Scholar
Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory. New York: Wiley.Google Scholar
Helfrich, R. F., Lendner, J. D., Mander, B. A., Guillen, H., Paff, M., Mnatsakanyan, L., Vadera, S., Walker, M. P., Lin, J. J., & Knight, R. T. (2019). Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nature Communications, 10(1), 116. https://doi.org/10.1038/s41467-019-11444-xGoogle Scholar
Hermann, D. M., Siccoli, M., Brugger, P., Wachter, K., Mathis, J., Achermann, P., & Bassetti, C. L. (2008). Evolution of neurological, neuropsychological and sleep-wake disturbances after paramedian thalamic stroke. Stroke, 39(1), 6268. https://doi.org/10.1161/STROKEAHA.107.494955Google Scholar
Herrera, C. G., Cadavieco, M. C., Jego, S., Ponomarenko, A., Korotkova, T., & Adamantidis, A. (2016). Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nature Neuroscience, 19(2), 290298. https://doi.org/10.1038/nn.4209Google Scholar
Hong, J., Ha, G. E., Kwak, H., Lee, Y., Jeong, H., Suh, P. G., & Cheong, E. (2020). Destabilization of light NREM sleep by thalamic PLCβ4 deletion impairs sleep-dependent memory consolidation. Scientific Reports, 10(1), 114. https://doi.org/10.1038/s41598-020-64377-7Google Scholar
Honjoh, S., Sasai, S., Schiereck, S. S., Nagai, H., Tononi, G., & Cirelli, C. (2018). Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-04497-xGoogle Scholar
Hopkins, W., & Johnston, D. (1984). Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus abstract. Science, 226(4672), 350352.Google Scholar
Hubbard, J., Gent, T. C., Hoekstra, M. M. B., Emmenegger, Y., Mongrain, V., Landolt, H. P., Adamantidis, A. R., & Franken, P. (2020). Rapid fast-delta decay following prolonged wakefulness marks a phase of wake-inertia in NREM sleep. Nature Communications, 11(1), 116. https://doi.org/10.1038/s41467-020–16915-0Google Scholar
Huber, R., Ghilardi, M. F., Massimini, M., & Tononi, G. (2004). Local sleep and learning. Nature, 430(6995), 7881. https://doi.org/10.1038/nature02663Google Scholar
Hughes, S. W., Cope, D. W., Blethyn, K. L., & Crunelli, V. (2002). Cellular mechanisms of the slow (< Hz) oscillation in thalamocortical neurons in vitro. Neuron, 33(6), 947958. https://doi.org/10.1016/S0896-6273(02)00623-2Google Scholar
Hughes, S. W., Lo, M., Cope, D. W., Blethyn, K. L., Ke, K. A., & Parri, H. R. (2004). Synchronized oscillations at α and θ frequencies in the lateral geniculate nucleus. Neuron, 42, 253268.Google Scholar
Jing, M., Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Zou, J., Trinh, S., Wu, R., Zhang, S., Pan, S., Hires, S. A., Xu, M., Li, H., Saksida, L. M., Prado, V. F., … Li, Y. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nature Methods, 17(11), 11391146. https://doi.org/10.1038/s41592-020-0953-2Google Scholar
Jones, B. E. (2005). From waking to sleeping: neuronal and chemical substrates. Trends in Pharmacological Sciences, 26(11), 578586. https://doi.org/10.1016/j.tips.2005.09.009Google Scholar
Jones, B. E., & Yang, T. ‐Z. (1985). The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. Journal of Comparative Neurology, 242(1), 5692. https://doi.org/10.1002/cne.902420105Google Scholar
Jouvet, M., Michel, F., & Courjon, J. (1959). Sur un stade d’activité éléctrique cérébrale rapide au cours du sommeil physiologique. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 153, 10241028.Google Scholar
Kayama, Y., Ohta, M., & Jodo, E. (1992). Firing of “possibly” cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Research, 569(2), 210220. https://doi.org/10.1016/0006-8993(92)90632-JGoogle Scholar
Kayser, M. S., Yue, Z., & Sehgal, A. (2014). A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science, 344(6181), 269274. https://doi.org/10.1126/science.1250553Google Scholar
Kim, A., Latchoumane, C., Lee, S., Kim, G. B., Cheong, E., Augustine, G. J., & Shin, H. S. (2012). Optogenetically induced sleep spindle rhythms alter sleep architectures in mice. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 2067320678. https://doi.org/10.1073/pnas.1217897109Google Scholar
Kirszenblat, L., & van Swinderen, B. (2015). The yin and yang of sleep and attention. Trends in Neurosciences, 38(12), 776786. https://doi.org/10.1016/j.tins.2015.10.001Google Scholar
Kocsis, B., Varga, V., Dahan, L., & Sik, A. (2006). Serotonergic neuron diversity: identification of raphe neurons with discharge time-locked to the hippocampal theta rhythm. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 10591064. https://doi.org/10.1073/pnas.0508360103Google Scholar
Kolmac, C., & Mitrofanis, J. (1999). Organization of the basal forebrain projection to the thalamus in rats. Neuroscience Letters, 272(3), 151154. https://doi.org/10.1016/S0304-3940(99)00614-XGoogle Scholar
Kroeger, D., Ferrari, L. L., Petit, G., Mahoney, C. E., Fuller, P. M., Arrigoni, E., & Scammell, T. E. (2017). Cholinergic, glutamatergic, and GABAergic neurons of the pedunculopontine tegmental nucleus have distinct effects on sleep/wake behavior in mice. Journal of Neuroscience, 37(5), 13521366. https://doi.org/10.1523/JNEUROSCI.1405-16.2016CrossRefGoogle ScholarPubMed
Krone, L. B., Yamagata, T., Blanco-duque, C., Guillaumin, M. C. C., Kahn, M. C., Vinne, V. Van Der, Mckillop, Tam, L. E., Peirson, S. K. E., Akerman, S. N., Hoerder-suabedissen, C. J., Molnár, A., Z., & Vyazovskiy, V. V. (2021). A role for the cortex in sleep–wake regulation. Nature Neuroscience, 24(September). https://doi.org/10.1038/s41593-021–00894-6Google Scholar
Krueger, J. M., Nguyen, J. T., Dykstra-Aiello, C. J., & Taishi, P. (2019). Local sleep. Sleep Medicine Reviews, 43, 1421. https://doi.org/10.1016/j.smrv.2018.10.001Google Scholar
Krueger, J. M., & Tononi, G. (2012). Local use-dependent sleep; synthesis of the new paradigm. Current Topics in Medicinal Chemistry, 11(19), 24902492. https://doi.org/10.2174/156802611797470330Google Scholar
Larkum, M. (2013). A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends in Neurosciences, 36(3), 141151. https://doi.org/10.1016/j.tins.2012.11.006Google Scholar
Latchoumane, C. F. V., Ngo, H. V. V., Born, J., & Shin, H. S. (2017). Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron, 95(2), 424435.e6. https://doi.org/10.1016/j.neuron.2017.06.025Google Scholar
Lecci, S., Fernandez, L. M. J., Weber, F. D., Cardis, R., Chatton, J.-Y., Born, J., & Luthi, A. (2017). Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Science Advances, 3. https://doi.org/10.3389/fphys.2017.00847Google Scholar
Lee, J., Kim, D., & Shin, H. (2004). Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking α1 G-subunit of T-type calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 1819518199.Google Scholar
Lemieux, M., Chen, J. Y., Lonjers, P., Bazhenov, M., & Timofeev, I. (2014). The impact of cortical deafferentation on the neocortical slow oscillation. Journal of Neuroscience, 34(16), 56895703. https://doi.org/10.1523/JNEUROSCI.1156-13.2014Google Scholar
Leung, L. C., Wang, G. X., Madelaine, R., Skariah, G., Kawakami, K., Deisseroth, K., Urban, A. E., & Mourrain, P. (2019). Neural signatures of sleep in zebrafish. Nature, 571(7764), 198204. https://doi.org/10.1038/s41586-019-1336-7Google Scholar
Lioudyno, M. I., Birch, A. M., Tanaka, B. S., Sokolov, Y., Goldin, A. L., Chandy, K. G., Hall, J. E., & Alkire, M. T. (2013). Shaker-related potassium channels in the central medial nucleus of the thalamus are important molecular targets for arousal suppression by volatile general anesthetics. Journal of Neuroscience, 33(41), 1631016322. https://doi.org/10.1523/JNEUROSCI.0344-13.2013Google Scholar
Liu, D., Li, W., Ma, C., Zheng, W., Yao, Y., Tso, C. F., Zhong, P., Chen, X., Song, J. H., Choi, W., Paik, S. B., Han, H., & Dan, Y. (2020). A common hub for sleep and motor control in the substantia nigra. Science, 367(6476), 440445. https://doi.org/10.1126/science.aaz0956Google Scholar
Liu, K., Kim, J., Kim, D. W., Zhang, Y. S., Bao, H., Denaxa, M., Lim, S. A., Kim, E., Liu, C., Wickersham, I. R., Pachinis, V., Hattar, S., Song, J., Brown, S. P., & Blackshaw, S. (2017). Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep. Nature, 548(7669), 582587. https://doi.org/10.1038/nature23663Google Scholar
Llinás, R. R., & Steriade, M. (2006). Bursting of thalamic neurons and states of vigilance. Journal of Neurophysiology, 95(6), 32973308. https://doi.org/10.1152/jn.00166.2006Google Scholar
Loomis, L. A., Newton, E. H., & Hobart, A. G. (1938). Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. Journal of Neurophysiology, 1, 413430.Google Scholar
Lőrincz, M. L., Gunner, D., Bao, Y., Connelly, W. M., Isaac, J. T. R., Hughes, S. W., & Crunelli, V. (2015). A distinct class of slow (~0.2–2 Hz) intrinsically bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics in the neocortex. Journal of Neuroscience, 35(14), 54425458. https://doi.org/10.1523/JNEUROSCI.3603-14.2015Google Scholar
Lugaresi, E., Medori, R., Montagna, P., Baruzzi, A., Cortelli, P., Lugaresi, A., Tinuper, P., Zucconi, M., & Gambetti, P. (1986). Fatal familial insomnia and dysautonomia with selective degeneration of thalamic nuclei. New England Journal of Medicine, 315(16), 9971003. https://doi.org/10.1056/NEJM198610163151605Google Scholar
Luo, Y. J., Li, Y. D., Wang, L., Yang, S. R., Yuan, X. S., Wang, J., Cherasse, Y., Lazarus, M., Chen, J. F., Qu, W. M., & Huang, Z. L. (2018). Nucleus accumbens controls wakefulness by a subpopulation of neurons expressing dopamine D1 receptors. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03889-3Google Scholar
Luppi, P. H., Peyron, C., & Fort, P. (2017). Not a single but multiple populations of GABAergic neurons control sleep. Sleep Medicine Reviews, 32, 8594. https://doi.org/10.1016/j.smrv.2016.03.002Google Scholar
Lüthi, A. (2014). Sleep spindles: where they come from, what they do. Neuroscientist, 20 (3), 243256. https://doi.org/10.1177/1073858413500854Google Scholar
Magnin, M., Bastuji, H., Garcia-Larrea, L., & Mauguière, F. (2004). Human thalamic medial pulvinar nucleus is not activated during paradoxical sleep. Cerebral Cortex, 14(8), 858862. https://doi.org/10.1093/cercor/bhh044Google Scholar
Mahon, S., Vautrelle, N., Pezard, L., Slaght, S. J., Deniau, J. M., Chouvet, G., & Charpier, S. (2006). Distinct patterns of striatal medium spiny neuron activity during the natural sleep-wake cycle. Journal of Neuroscience, 26(48), 1258712595. https://doi.org/10.1523/JNEUROSCI.3987-06.2006Google Scholar
Mai, J. K., & Majtanik, M. (2019). Toward a common terminology for the thalamus. Frontiers in Neuroanatomy, 12(January), 123. https://doi.org/10.3389/fnana.2018.00114CrossRefGoogle Scholar
Mak-Mccully, R. A., Rolland, M., Sargsyan, A., Gonzalez, C., Magnin, M., Chauvel, P., Rey, M., Bastuji, H., & Halgren, E. (2017). Coordination of cortical and thalamic activity during non-REM sleep in humans. Nature Communications, 8(May). https://doi.org/10.1038/ncomms15499Google Scholar
Manoach, D. S., Pan, J. Q., Purcell, S. M., & Stickgold, R. (2016). Reduced sleep spindles in schizophrenia: a treatable endophenotype that links risk genes to impaired cognition? Biological Psychiatry, 80(8), 599608. https://doi.org/10.1016/j.biopsych.2015.10.003Google Scholar
Manoach, D. S., Thakkar, K. N., Stroynowski, E., Ely, A., McKinley, S. K., Wamsley, E., Djonlagic, I., Vangel, M. G., Goff, D. C., & Stickgold, R. (2010). Reduced overnight consolidation of procedural learning in chronic medicated schizophrenia is related to specific sleep stages. Journal of Psychiatric Research, 44(2), 112120. https://doi.org/10.1016/j.jpsychires.2009.06.011Google Scholar
Maquet, P., Laureys, S., Peigneux, P., Fuchs, S., Petiau, C., Phillips, C., Aerts, J., Del Fiore, G., Degueldre, C., Meulemans, T., Luxen, A., Franck, G., Van Der Linden, M., Smith, C., & Cleeremans, A. (2000). Experience-dependent changes in changes in cerebral activation during human REM sleep. Nature Neuroscience, 3(8), 831836. https://doi.org/10.1038/77744CrossRefGoogle ScholarPubMed
Maquet, P., Peters, J., Aerts, J., Delfiore, G., Degueldre, C., Luxen, A., & Franck, G. (1996). Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature, 383, 163166.Google Scholar
Massimini, M., Ferrarelli, F., Esser, S. K., Riedner, B. A., Huber, R., Murphy, M., Peterson, M. J., & Tononi, G. (2007). Triggering sleep slow waves by transcranial magnetic stimulation. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 84968501.Google Scholar
Massimini, M., Huber, R., Ferrarelli, F., Hill, S., & Tononi, G. (2004). The sleep slow oscillation as a traveling wave. Journal of Neuroscience, 24(31), 68626870. https://doi.org/10.1523/JNEUROSCI.1318-04.2004Google Scholar
McBride, R. L., & Sutin, J. (1976). Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. Journal of Comparative Neurology, 165(3), 265284. https://doi.org/10.1002/cne.901650302Google Scholar
McCormick, D. A., McGinley, M. J., & Salkoff, D. B. (2015). Brain state dependent activity in the cortex and thalamus. Current Opinion in Neurobiology, 31, 133140. https://doi.org/10.1016/j.conb.2014.10.003Google Scholar
McCormick, D. A., & Pape, H. C. (1988). Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature, 334(6179), 246248. https://doi.org/10.1038/334246a0Google Scholar
McCormick, D. A., & Pape, H. C. (1990). Noradrenergic and serotoninergic modulation of a hyperpolarization-activated cation current in thalamic relay neurons. Journal of Physiology, 431, 319342.Google Scholar
McCormick, D. A., Pape, H. C., & Williamson, A. (1991). Actions of norepinephrine in the cerebral cortex and thalamus: implications for function of the central noradrenergic system. Progress in Brain Research, 88(C), 293305. https://doi.org/10.1016/S0079-6123(08)63817–0Google Scholar
McCormick, D. A., & Prince, D. A. (1986). Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature, 319, 402405.Google Scholar
McKenna, J. T., & Vertes, R. P. (2004). Afferent projections to nucleus reuniens of the thalamus. Journal of Comparative Neurology, 480(2), 115142. https://doi.org/10.1002/cne.20342Google Scholar
Mesbah-Oskui, L., Horner, R. L., Orser, B. A., & Horner, R. L. (2014). Thalamic δ-subunit containing GABAA receptors promote electrocortical signatures of deep non-REM sleep but do not mediate the effects of etomidate at the thalamus in vivo. Journal of Neuroscience, 34(37), 1225312266. https://doi.org/10.1523/JNEUROSCI.0618-14.2014Google Scholar
Mölle, M., Bergmann, T. O., Marshall, L., & Born, J. (2011). Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep, 34(10), 14111421. https://doi.org/10.5665/SLEEP.1290Google Scholar
Morairty, S. R., Dittrich, L., Pasumarthi, R. K., Valladao, D., Heiss, J. E., Gerashchenko, D., & Kilduff, T. S. (2013). A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 2027220277. https://doi.org/10.1073/pnas.1314762110Google Scholar
Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1(1–4), 455473.Google Scholar
Moxon, K. A., Devilbiss, D. M., Chapin, J. K., & Waterhouse, B. D. (2007). Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study. Brain Research, 1147(1), 105123. https://doi.org/10.1016/j.brainres.2007.02.006Google Scholar
Muehlroth, B. E., Sander, M. C., Fandakova, Y., Grandy, T. H., Rasch, B., Shing, Y. L., & Werkle-Bergner, M. (2019). Precise slow oscillation–spindle coupling promotes memory consolidation in younger and older adults. Scientific Reports, 9(1), 115. https://doi.org/10.1038/s41598-018-36557-zGoogle Scholar
Nath, R. D., Bedbrook, C. N., Abrams, M. J., Basinger, T., Bois, J. S., Prober, D. A., Sternberg, P. W., Gradinaru, V., & Goentoro, L. (2017). The jellyfish Cassiopea exhibits a sleep-like state. Current Biology, 27(19), 2984–2990.e3. https://doi.org/10.1016/j.cub.2017.08.014Google Scholar
Newman, E. L., Gupta, K., Climer, J. R., Monaghan, C. K., & Hasselmo, M. E. (2012). Cholinergic modulation of cognitive processing: insights drawn from computational models. Frontiers in Behavioral Neuroscience. https://doi.org/10.3389/fnbeh.2012.00024Google Scholar
Nichols, A. L. A., Eichler, T., Latham, R., & Zimmer, M. (2017). A global brain state underlies C. elegans sleep behavior. Science, 356(6344), 12471256. https://doi.org/10.1126/science.aam6851Google Scholar
Oishi, Y., Xu, Q., Wang, L., Zhang, B. J., Takahashi, K., Takata, Y., Luo, Y. J., Cherasse, Y., Schiffmann, S. N., De Kerchove D’Exaerde, A., Urade, Y., Qu, W. M., Huang, Z. L., & Lazarus, M. (2017). Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nature Communications, 8(1), 112. https://doi.org/10.1038/s41467-017–00781-4Google Scholar
Pace-Schott, E. F., & Hobson, J. A. (2002). The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nature Reviews Neuroscience, 3(8), 591605. https://doi.org/10.1038/nrn895Google Scholar
Pape, H. C., & McCormick, D. A. (1989). Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature, 340, 715718. https://doi.org/10.1038/246170a0Google Scholar
Parent, A., Paré, D., Smith, Y., & Steriade, M. (1988). Basal forebrain cholinergic and noncholinergic projections to the thalamus and brainstem in cats and monkeys. Journal of Comparative Neurology, 277(2), 281301. https://doi.org/10.1002/cne.902770209Google Scholar
Pedersen, N. P., Ferrari, L., Venner, A., Wang, J. L., Abbott, S. B. G., Vujovic, N., Arrigoni, E., Saper, C. B., & Fuller, P. M. (2017). Supramammillary glutamate neurons are a key node of the arousal system. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01004-6Google Scholar
Pellegrini, C., Lecci, S., Lüthi, A., & Astori, S. (2016). Suppression of sleep spindle rhythmogenesis in mice with deletion of CaV3.2 and CaV3.3 T-type Ca2+ channels. Sleep, 39(4), 875885.Google Scholar
Phillips, J. W., Schulmann, A., Hara, E., Winnubst, J., Liu, C., Valakh, V., Wang, L., Shields, B. C., Korff, W., Chandrashekar, J., Lemire, A. L., Mensh, B., Dudman, J. T., Nelson, S. B., & Hantman, A. W. (2019). A repeated molecular architecture across thalamic pathways. Nature Neuroscience, 22(11), 19251935. https://doi.org/10.1038/s41593-019-0483-3Google Scholar
Piantoni, G., Halgren, E., & Cash, S. S. (2017).Spatiotemporal characteristics of sleep spindles depend on cortical location. NeuroImage, 146(June), 236245. https://doi.org/10.1016/j.neuroimage.2016.11.010Google Scholar
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76(1), 116129. https://doi.org/10.1016/j.neuron.2012.08.036Google Scholar
Pita-Almenar, J. D., Yu, D., Lu, H. C., & Beierlein, M. (2014). Mechanisms underlying desynchronization of cholinergic-evoked thalamic network activity. Journal of Neuroscience, 34(43), 1446314474. https://doi.org/10.1523/JNEUROSCI.2321-14.2014Google Scholar
Portas, C. M., Bjorvatn, B., & Ursin, R. (2000). Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Progress in Neurobiology, 60, 1335.Google Scholar
Poulet, J. F. A., Fernandez, L. M. J., Crochet, S., & Petersen, C. C. H. (2012). Thalamic control of cortical states. Nature Neuroscience, 15(3), 370372. https://doi.org/10.1038/nn.3035Google Scholar
Poulet, J. F. A., & Petersen, C. C. H. (2008). Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature, 454(7206), 881885. https://doi.org/10.1038/nature07150Google Scholar
Puentes-Mestril, C., & Aton, S. J. (2017). Linking network activity to synaptic plasticity during sleep: Hypotheses and recent data. Frontiers in Neural Circuits, 11(September), 118. https://doi.org/10.3389/fncir.2017.00061Google Scholar
Qiu, M. H., Chen, M. C., Fuller, P. M., & Lu, J. (2016). Stimulation of the Pontine parabrachial nucleus promotes wakefulness via extra-thalamic forebrain circuit nodes. Current Biology, 26(17), 23012312. https://doi.org/10.1016/j.cub.2016.07.054Google Scholar
Raizen, D. M., Zimmerman, J. E., Maycock, M. H., Ta, U. D., You, Y. J., Sundaram, M. V., & Pack, A. I. (2008). Lethargus is a Caenorhabditis elegans sleep-like state. Nature, 451(7178), 569572. https://doi.org/10.1038/nature06535Google Scholar
Rikhye, R. V., Wimmer, R. D., & Halassa, M. M. (2018). Toward an integrative theory of thalamic function. Annual Review of Neuroscience, 41(March), 163183. https://doi.org/10.1146/annurev-neuro-080317-062144Google Scholar
Rodenkirch, C., Liu, Y., Schriver, B. J., & Wang, Q. (2019). Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nature Neuroscience, 22(1), 120133. https://doi.org/10.1038/s41593-018–0283-1Google Scholar
Sanchez-Vives, M. V., Descalzo, V. F., Reig, R., Figueroa, N. A., Compte, A., & Gallego, R. (2008). Rhythmic spontaneous activity in the piriform cortex. Cerebral Cortex, 18(5), 11791192. https://doi.org/10.1093/cercor/bhm152Google Scholar
Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 10271034. https://doi.org/10.1038/79848Google Scholar
Santamaria, J., Pujol, M., Orteu, N., Solanas, A., Cardenal, C., Santacruz, P., Chimeno, E., & Moon, P. (2000). Unilateral thalamic stroke does not decrease ipsilateral sleep spindles. Sleep, 23(3), 333339. https://doi.org/10.1093/sleep/23.3.1Google Scholar
Saper, C. B., Fuller, P. M., Pedersen, N. P., Lu, J., & Scammell, T. E. (2010). Sleep state switching. Neuron, 68(6), 10231042. https://doi.org/doi:10.1016/j.neuron.2010.11.032.Google Scholar
Sarasso, S., D’Ambrosio, S., Fecchio, M., Casarotto, S., Viganò, A., Landi, C., Mattavelli, G., Gosseries, O., Quarenghi, M., Laureys, S., Devalle, G., Rosanova, M., & Massimini, M. (2020). Local sleep-like cortical reactivity in the awake brain after focal injury. Brain, 143(12), 36723684. https://doi.org/10.1093/brain/awaa338Google Scholar
Schabus, M., Dang-Vu, T. T., Albouy, G., Balteau, E., Boly, M., Carrier, J., Darsaud, A., Degueldre, C., Desseilles, M., Gais, S., Phillips, C., Rauchs, G., Schnakers, C., Sterpenich, V., Vandewalle, G., Luxen, A., & Maquet, P. (2007). Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 1316413169. https://doi.org/10.1073/pnas.0703084104Google Scholar
Schabus, M., Dang-vu, T. T., Philip, D., Heib, J., Boly, M., Vandewalle, G., Schmidt, C., Albouy, G., Darsaud, A., & Gais, S. (2012). The fate of incoming stimuli during NREM sleep is determined by spindles and the phase of the slow oscillation. Frontiers in Neurology, 3(April), 111. https://doi.org/10.3389/fneur.2012.00040Google Scholar
Seibt, J., Richard, C. J., Sigl-Glöckner, J., Takahashi, N., Kaplan, D. I., Doron, G., De Limoges, D., Bocklisch, C., & Larkum, M. E. (2017). Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-00735-wGoogle Scholar
Seugnet, L., Suzuki, Y., Donlea, J. M., Gottschalk, L., & Shaw, P. J. (2011). Sleep deprivation during early-adult development results in long-lasting learning deficits in adult Drosophila. Sleep, 34(2), 137146. https://doi.org/10.1093/sleep/34.2.137Google Scholar
Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19(4), 533541. https://doi.org/10.1038/nn.4269Google Scholar
Siclari, F., Baird, B., Perogamvros, L., Bernardi, G., LaRocque, J. J., Riedner, B., Boly, M., Postle, B. R., & Tononi, G. (2017). The neural correlates of dreaming. Nature Neuroscience, 20(6), 872878. https://doi.org/10.1038/nn.4545Google Scholar
Siclari, F., Bernardi, G., Cataldi, J., & Tononi, G. (2018). Dreaming in NREM sleep: a high-density EEG study of slow waves and spindles. Journal of Neuroscience, 38(43), 91759185. https://doi.org/10.1523/JNEUROSCI.0855–18.2018Google Scholar
Siclari, , F., Bernardi, F., Riedner, B. A., LaRocque, J. J., Benca, R. M., & Tononi, G. (2014). Two distinct synchronization processes in the transition to sleep. Sleep, 37.Google Scholar
Siclari, F., & Tononi, G. (2017). Local aspects of sleep and wakefulness. Current Opinion in Neurobiology, 44, 222227. https://doi.org/10.1016/j.conb.2017.05.008Google Scholar
Sieber, A. R., Min, R., & Nevian, T. (2013). Non-Hebbian long-term potentiation of inhibitory synapses in the thalamus. Journal of Neuroscience, 33(40), 1567515685. https://doi.org/10.1523/JNEUROSCI.0247-13.2013Google Scholar
Sillito, A. M., Kemp, J. A., & Berardi, N. (1983). The cholinergic influence on the function of the cat dorsal lateral geniculate nucleus (dLGN). Brain Research, 280(2), 299307. https://doi.org/10.1016/0006–8993(83)90059–8Google Scholar
Sriji, S., Akhtar, N., & Mallick, H. N. (2020). Mediodorsal thalamus lesion increases paradoxical sleep in rats. Sleep Science, 16. https://doi.org/10.5935/1984-0063.20190155Google Scholar
Stanton, P. K., & Sarvey, J. M. (1985). Depletion of norepinephrine, but not serotonin, reduces long-term potentiation in the dentate gyrus of rat hippocampal slices. Journal of Neuroscience, 5(8), 21692176. https://doi.org/10.1523/jneurosci.05-08-02169.1985Google Scholar
Steriade, M. (2006). Grouping of brain rhythms in corticothalamic systems. Neuroscience, 137(4), 10871106. https://doi.org/10.1016/j.neuroscience.2005.10.029Google Scholar
Steriade, M., Curro Dossi, R., Pare, D., & Oakson, G. (1991). Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proceedings of the National Academy of Sciences of the United States of America, 88(10), 43964400. https://doi.org/10.1073/pnas.88.10.4396Google Scholar
Steriade, M., Datta, S., Paré, D., Oakson, G., & Curró Dossi, R. (1990). Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. Journal of Neuroscience, 10(8), 25412559. https://doi.org/10.1523/jneurosci.10-08-02541.1990Google Scholar
Steriade, M., Nunez, A., & Amzica, F. (1993a). A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. Journal of Neuroscience, 13(8), 32523265. https://doi.org/10.1523/jneurosci.13-08-03252.1993Google Scholar
Steriade, M., Nunez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. Journal of Neuroscience, 13(8), 32663283. https://doi.org/10.1016/S0040-4039(97)01107–6Google Scholar
Steriade, M., Timofeev, I., & Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. Journal of Neurophysiology, 85(5), 19691985. https://doi.org/10.1152/jn.2001.85.5.1969Google Scholar
Stucynski, J. A., Schott, A. L., Baik, J., Chung, S., & Weber, F. (2021). Regulation of REM sleep by inhibitory neurons in the dorsomedial medulla. Current Biology, 32, 114. https://doi.org/10.1016/j.cub.2021.10.030Google Scholar
Sun, Y. G., Pita-Almenar, J. D., Wu, C. S., Renger, J. J., Uebele, V. N., Lu, H. C., & Beierlein, M. (2013). Biphasic cholinergic synaptic transmission controls action potential activity in thalamic reticular nucleus neurons. Journal of Neuroscience, 33(5), 20482059. https://doi.org/10.1523/JNEUROSCI.3177-12.2013Google Scholar
Takahashi, T. M., Sunagawa, G. A., Soya, S., Abe, M., Sakurai, K., Ishikawa, K., Yanagisawa, M., Hama, H., Hasegawa, E., Miyawaki, A., Sakimura, K., Takahashi, M., & Sakurai, T. (2020). A discrete neuronal circuit induces a hibernation-like state in rodents. Nature, 583(7814), 109114. https://doi.org/10.1038/s41586-020-2163-6CrossRefGoogle Scholar
Takata, Y., Oishi, Y., Zhou, X. Z., Hasegawa, E., Takahashi, K., Cherasse, Y., Sakurai, T., & Lazarus, M. (2018). Sleep and wakefulness are controlled by ventral medial midbrain/pons GABAergic neurons in mice. Journal of Neuroscience, 38(47), 1008010092. https://doi.org/10.1523/JNEUROSCI.0598-18.2018Google Scholar
Timofeev, I., & Chauvette, S. (2017). Sleep slow oscillation and plasticity. Current Opinion in Neurobiology, 44, 116126. https://doi.org/10.1016/j.conb.2017.03.019Google Scholar
Timofeev, I., Grenier, F., Bazhenov, M., Sejnowski, T. J., & Steriade, M. (2000). Origin of slow cortical oscillations in deafferented cortical slabs. Cerebral Cortex, 10(12), 11851199. https://doi.org/10.1093/cercor/10.12.1185Google Scholar
Timofeev, I., & Steriade, M. (1996). Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. Journal of Neurophysiology, 76(6), 41524168. https://doi.org/10.1152/jn.1996.76.6.4152Google Scholar
Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7), 450461. https://doi.org/10.1038/nrn.2016.44Google Scholar
Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 1234. https://doi.org/10.1016/j.neuron.2013.12.025Google Scholar
Totah, N. K. B., Logothetis, N. K., & Eschenko, O. (2019). Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Research, 1709(December), 5066. https://doi.org/10.1016/j.brainres.2018.12.031Google Scholar
Tsai, C. J., Nagata, T., Liu, C. Y., Suganuma, T., Kanda, T., Miyazaki, T., Liu, K., Saitoh, T., Nagase, H., Lazarus, M., Vogt, K. E., Yanagisawa, M., & Hayashi, Y. (2021). Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors. Cell Reports, 36(7), 109558. https://doi.org/10.1016/j.celrep.2021.109558Google Scholar
Vantomme, G., Osorio-Forero, A., Lüthi, A., & Fernandez, L. M. J. (2019). Regulation of local sleep by the thalamic reticular nucleus. Frontiers in Neuroscience, 13(June), 18. https://doi.org/10.3389/fnins.2019.00576Google Scholar
Varela, C. (2013). The gating of neocortical information by modulators. Journal of Neurophysiology, 109(5), 12291232. https://doi.org/10.1152/jn.00701.2012Google Scholar
Varela, C. (2014). Thalamic neuromodulation and its implications for executive networks. Neural Circuits, 8(June), 122. https://doi.org/10.3389/fncir.2014.00069Google Scholar
Varela, C., & Sherman, S. M. (2007). Differences in response to muscarinic activation between first and higher order thalamic relays. Journal of Neurophysiology, 98(6), 35383547. https://doi.org/10.1152/jn.00578.2007Google Scholar
Varela, C., & Sherman, S. M. (2009). Differences in response to serotonergic activation between first and higher order thalamic nuclei. Cerebral Cortex, 19(8), 17761786. https://doi.org/10.1093/cercor/bhn208Google Scholar
Verret, L., Goutagny, R., Fort, P., Cagnon, L., Salvert, D., Léger, L., Boissard, R., Salin, P., Peyron, C., & Luppi, P. H. (2003). A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neuroscience, 4, 110. https://doi.org/10.1186/1471-2202-4-19Google Scholar
Vertes, R. P., Linley, S. B., & Hoover, W. B. (2015). Limbic circuitry of the midline thalamus. Neuroscience and Biobehavioral Reviews, 54, 89107. https://doi.org/10.1016/j.neubiorev.2015.01.014Google Scholar
Vyazovskiy, V. V., Olcese, U., Hanlon, E. C., Nir, Y., Cirelli, C., & Tononi, G. (2011). Local sleep in awake rats. Nature, 472(7344), 443447. https://doi.org/10.1038/nature10009Google Scholar
Vyazovskiy, V. V., Olcese, U., Lazimy, Y. M., Faraguna, U., Esser, S. K., Williams, J. C., Cirelli, C., & Tononi, G. (2009). Cortical firing and sleep homeostasis. Neuron, 63(6), 865878. https://doi.org/10.1016/j.neuron.2009.08.024Google Scholar
Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V., Goff, D. C., Stickgold, R., & Manoach, D. S. (2012). Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biological Psychiatry, 71(2), 154161. https://doi.org/10.1016/j.biopsych.2011.08.008Google Scholar
Warby, S. C., Wendt, S. L., Welinder, P., Munk, E. G. S., Carrillo, O., Sorensen, H. B. D., Jennum, P., Peppard, P. E., Perona, P., & Mignot, E. (2014). Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nature Methods, 11(4), 385392. https://doi.org/10.1038/nmeth.2855Google Scholar
Watson, B. O., Levenstein, D., Greene, J. P., Gelinas, J. N., & Buzsáki, G. (2016). Network homeostasis and state dynamics of neocortical sleep. Neuron, 90(4), 839852. https://doi.org/10.1016/j.neuron.2016.03.036Google Scholar
Watts, A., Gritton, H. J., Sweigart, J., & Poe, G. R. (2012). Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning. Journal of Neuroscience, 32(39), 1341113420. https://doi.org/10.1523/JNEUROSCI.0170-12.2012Google Scholar
Weber, F., & Dan, Y. (2016). Circuit-based interrogation of sleep control. Nature, 538(7623), 5159. https://doi.org/10.1038/nature19773Google Scholar
Wells, M. F., Wimmer, R. D., Schmitt, L. I., Feng, G., & Halassa, M. M. (2016). Thalamic reticular impairment underlies attention deficit in Ptchd1 Y’mice. Nature, 532(7597), 5863. https://doi.org/10.1038/nature17427Google Scholar
Weyand, T. G., Boudreaux, M., Guido, W., Theodore, G., Boudreaux, M., & Guido, W. (2000). Burst and tonic response modes in thalamic neurons during sleep and wakefulness. Journal of Physiology, 85(3), 11071118.Google Scholar
White, N. S., & Alkire, M. T. (2003). Impaired thalamocortical connectivity in humans during general-anesthetic- induced unconsciousness. NeuroImage, 19(2), 402411. https://doi.org/10.1016/S1053-8119(03)00103-4Google Scholar
Wu, W., Cui, L., Fu, Y., Tian, Q., Liu, L., Zhang, X., Du, N., Chen, Y., Qiu, Z., Song, Y., Shi, F. D., & Xue, R. (2016). Sleep and cognitive abnormalities in acute minor thalamic infarction. Neuroscience Bulletin, 32(4), 341348. https://doi.org/10.1007/s12264-016-0036-7Google Scholar
Xu, M., Chung, S., Zhang, S., Zhong, P., Ma, C., Chang, W. C., Weissbourd, B., Sakai, N., Luo, L., Nishino, S., & Dan, Y. (2015). Basal forebrain circuit for sleep-wake control. Nature Neuroscience, 18(11), 16411647. https://doi.org/10.1038/nn.4143Google Scholar
Yamazaki, R., Toda, H., Libourel, P. A., Hayashi, Y., Vogt, K. E., & Sakurai, T. (2020). Evolutionary origin of distinct NREM and REM sleep. Frontiers in Psychology, 11(December), 18. https://doi.org/10.3389/fpsyg.2020.567618Google Scholar
Yang, S. R., Hu, Z. Z., Luo, Y. J., Zhao, Y. N., Sun, H. X., Yin, D., Wang, C. Y., Yan, Y. D., Wang, D. R., Yuan, X. S., Ye, C. B., Guo, W., Qu, W. M., Cherasse, Y., Lazarus, M., Ding, Y. Q., & Huang, Z. L. (2018). The rostromedial tegmental nucleus is essential for non-rapid eye movement sleep. PLoS Biology, 16(4), 129. https://doi.org/10.1371/journal.pbio.2002909Google Scholar
Yuan, X.-S., Wang, L., Dong, H., Qu, W.-M., Yang, S.-R., Cherasse, Y., Lazarus, M., Schiffmann, S. N., d’Exaerde, A. de K., Li, R.-X., & Huang, Z.-L. (2017). Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. eLife, 6, 124. https://doi.org/10.7554/elife.29055Google Scholar
Zhang, Ze, Liu, W. Y., Diao, Y. P., Xu, W., Zhong, Y. H., Zhang, J. Y., Lazarus, M., Liu, Y. Y., Qu, W. M., & Huang, Z. L. (2019). Superior colliculus GABAergic neurons are essential for acute dark induction of wakefulness in mice. Current Biology, 29(4), 637–644.e3. https://doi.org/10.1016/j.cub.2018.12.031Google Scholar
Zhang, Zhe, Ferretti, V., Güntan, I., Moro, A., Steinberg, E. A., Ye, Z., Zecharia, A. Y., Yu, X., Vyssotski, A. L., Brickley, S. G., Yustos, R., Pillidge, Z. E., Harding, E. C., Wisden, W., & Franks, N. P. (2015). Neuronal ensembles sufficient for recovery sleep and the sedative actions of α 2 adrenergic agonists. Nature Neuroscience, 18(4), 553561. https://doi.org/10.1038/nn.3957Google Scholar
Zhang, Zhe, Zhong, P., Hu, F., Barger, Z., Ren, Y., Ding, X., Li, S., Weber, F., Chung, S., Palmiter, R. D., & Dan, Y. (2019). An excitatory circuit in the perioculomotor midbrain for non-REM sleep control. Cell, 177(5), 1293–1307.e16. https://doi.org/10.1016/j.cell.2019.03.041Google Scholar
Zhong, P., Zhang, Z., Barger, Z., Ma, C., Liu, D., Ding, X., & Dan, Y. (2019). Control of non-REM sleep by midbrain neurotensinergic neurons. Neuron, 104(4), 795–809.e6. https://doi.org/10.1016/j.neuron.2019.08.026Google Scholar
Zhu, J., & Heggelund, P. (2001). Muscarinic regulation of dendritic and axonal outputs of rat thalamic interneurons: a new cellular mechanism for uncoupling distal dendrites. Journal of Neuroscience, 21(4), 11481159. https://doi.org/10.1523/jneurosci.21–04-01148.2001Google Scholar
Zhu, L., Blethyn, K. L., Cope, D. W., Tsomaia, V., Crunelli, V., & Hughes, S. W. (2006). Nucleus- and species-specific properties of the slow (< 1 Hz) sleep oscillation in thalamocortical neurons. Neuroscience, 141, 621636. https://doi.org/10.1016/j.neuroscience.2006.04.069Google Scholar

References

Acsády, L. The thalamic paradox. Nat Neurosci. 20, 901902 (2017)Google Scholar
Adams, ZA, Forgacs, PB, Conte, MC, Nauvel, TN, Drover, JD, Schiff, ND. Late and progressive alterations of sleep dynamics following central thalamic deep brain stimulation (CT-DBS) in chronic minimally conscious state. Clin Neurophysiol. 127, 30863092 (2016)Google Scholar
Alexander, GE, DeLong, MR, Strick, PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Ann Rev Neurosci. 9, 357381 (1986)Google Scholar
Baker, JL, Ryou, JW, Wei, XF, Butson, CR, Schiff, ND, Purpura, KP. Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates. J Neurophysiol. 116, 23832404 (2016)Google Scholar
Barbas, H, Pandya, DN. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol. 286, 353375 (1989)Google Scholar
Barthó, P, Freund, TF, Acsády, L. Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci. 16, 9991014 (2002)Google Scholar
Bayer, L, Eggermann, E, Saint-Mleux, B, Machard, D, Jones, BE, Mühlethaler, M, Serafin, M. Selective action of orexin (hypocretin) on nonspecific thalamocortical projection neurons. J Neurosci. 22, 78357839 (2002)Google Scholar
Beck, AK, Sandmann, P, Dürschmid, S, Schwabe, K, Saryyeva, A, Krauss, JK. Neuronal activation in the human centromedian-parafascicular complex predicts cortical responses to behaviorally significant auditory events. Neuroimage. 211, 116583 (2020)Google Scholar
Bernander, O, Douglas, RJ, Martin, KA, Koch, C. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci USA. 88, 1156911573 (1991)Google Scholar
Bolkan, SS, Stujenske, JM, Parnaudeau, S, Spellman, TJ, Rauffenbart, C, Abbas, AI, Harris, AZ, Gordon, JA, Kellendonk, C. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci. 20, 987996 (2017)Google Scholar
Buckwalter, JA, Parvizi, J, Morecraft, RJ, van Hoesen, GW. Thalamic projections to the posteromedial cortex in the macaque. J Comp Neurol. 507, 17091733 (2008)Google Scholar
Burk, JA, Glode, BM, Drugan RC and Mair RG. Effects of chlordiazepoxide and FG 7142 on a rat model of diencephalic amnesia as measured by delayed matching to sample performance. Psychopharmacology. 142, 413420 (1999)Google Scholar
Burk, JA, Mair, RG. Thalamic amnesia reconsidered: excitotoxic lesions of the intralaminar nuclei, but not the mediodorsal nucleus, disrupt place delayed matching-to-sample performance in rats (Rattus norvegicus). Behav Neurosci. 112, 5467 (1998)Google Scholar
Calderon, DP, Schiff, ND. Objective and graded calibration of recovery of consciousness in experimental models. Curr Opin Neurol. 34, 142149 (2021)CrossRefGoogle ScholarPubMed
Castaigne, P, Lhermitte, F, Buge, A, Escourolle, R, Hauw, JJ, Lyon-Caen, O. Paramedian thalamic and midbrain infarct: clinical and neuropathological study. Ann Neurol. 10, 127148. (1981)Google Scholar
Chudy, D, Deletis, V, Almahariq, F, Marčinković, P, Škrlin, J, Paradžik, V. Deep brain stimulation for the early treatment of the minimally conscious state and vegetative state: experience in 14 patients. J Neurosurg. 128, 11891198 (2018)Google Scholar
Cohadon, F, Richer, E. Deep cerebral stimulation in patients with post-traumatic vegetative state: 25 cases. Neurochirurgie. 39, 281292 (1993)Google Scholar
Corrigan, JD, Cuthbert, JP, Harrison-Felix, C, Whiteneck, GG, Bell, JM, Miller, AC, Coronado, VG, Pretz, CR. US population estimates of health and social outcomes 5 years after rehabilitation for traumatic brain injury. J Head Trauma Rehabil. 29, E19. (2014)Google Scholar
Cover, KK, Gyawali, U, Kerkhoff, WG, Patton, MH, Mu, C, White, MG, Marquardt, AE, Roberts, BM, Cheer, JF, Mathur, BN. Activation of the rostral intralaminar thalamus drives reinforcement through striatal dopamine release. Cell Rep. 26, 1389–1398.e3 (2019)Google Scholar
Cruikshank, SJ, Ahmed, OJ, Stevens, TR, Patrick, SL, Gonzalez, AN, Elmaleh, M, Connors, BW. Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 32, 1781317823 (2012)Google Scholar
Curró Dossi, R, Paré, D, Steriade, M. Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. J Neurophysiol. 3, 393406. (1991)Google Scholar
Deschênes, M, Bourassa, J, Parent, A. Striatal and cortical projections of single neurons from the central lateral thalamic nucleus in the rat. Neuroscience. 72, 679687 (1996)Google Scholar
Dikmen, SS, Machamer, JE, Powell, JM, Temkin, NR. Outcome 3 to 5 years after moderate to severe traumatic brain injury. Arch Phys Med Rehabil. 84, 14491457 (2003)Google Scholar
Donoghue, JA, Bastos, AM, Yanar, J. Kornblith, S, Mahnke, M, Brown, EN, Miller, EK. Neural signatures of loss of consciousness and its recovery by thalamic stimulation. BioArxiv. http://dx.doi.org/10.1101/806687 (2019)Google Scholar
Donoghue, JA, Kornblith, S, Mahke, M, Lundqvist, M, Roy, JE, Brown, EN, Miller, EK. Thalamic deep brain stimulation restores awake-like behavior and cortical dynamics in the anesthetized macaque. In Society for Neuroscience Abstracts [Abstract 751.04] (2017)Google Scholar
Drover, JD, Schiff, ND. A method for decomposing multivariate time series into a causal hierarchy within specific frequency bands. J Comput Neurosci. 45, 5982 (2018)Google Scholar
Duncan, J, Owen, AM. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475483 (2000)Google Scholar
Edlow, BL, Claassen, J, Schiff, ND, Greer, DM. Recovery from disorders of consciousness: mechanisms, prognosis, and emerging therapies. Nat Rev Neurol. 17, 135156. (2021)Google Scholar
Edlow, BL, Takahashi, E, Wu, O, Benner, T, Dai, G, Bu, L, Grant, PE, Greer, DM, Greenberg, SM, Kinney, HC, Folkerth, RD. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. J Neuropathol Exp Neurol. 71, 531546 (2012)Google Scholar
Ellender, TJ, Harwood, J, Kosillo, P, Capogna, M, Bolam, JP. Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol. 591, 257272 (2013)Google Scholar
Feindel, W, Gloor, P. Comparison of electrographic effects of stimulation of the amygdala and brain stem reticular formation in cats. Electroencephalogr Clin Neurophysiol. 3, 389402. (1954)Google Scholar
Felleman, DJ, Van Essen, DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1, 147. (1991)Google Scholar
Fridman, EA, Beattie, BJ, Broft, A, Laureys, S, Schiff, ND. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. Proc Natl Acad Sci USA. 111, 64736478 (2014)Google Scholar
Fridman, EA, Osbourne, JR, Mozley, PD, Victor, JD, Schiff, ND. Presynaptic dopamine deficit in minimally conscious state patients following traumatic brain injury. Brain. 142,18871893 (2019)Google Scholar
Fuller, PM, Sherman, D, Pedersen, NP, Saper, CB, Lu, J. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 519, 933956 (2011)Google Scholar
Fuster, JM. Effects of stimulation of brain stem on tachistoscopic perception. Science. 127, 150 (1958)Google Scholar
Gao, S, Calderon, DP. Robust alternative to the righting reflex to assess arousal in rodents. Sci Rep. 10, 20280 (2020)Google Scholar
Gao, S, Proekt, A, Renier, N, Calderon, DP, Pfaff, DW. Activating an anterior nucleus gigantocellularis subpopulation triggers emergence from pharmacologically-induced coma in rodents. Nat Comm. 10, 2897 (2019)Google Scholar
Giacino, JT, Ashwal, S, Childs, N, Cranford, R, Jennett, B, Katz, DI, Kelly, JP, Rosenberg, JH, Whyte, J, Zafonte, RD, Zasler, ND. The minimally conscious state: definition and diagnostic criteria. Neurology. 58, 349353 (2002)Google Scholar
Giacino, JT, Fins, JJ, Laureys, S, Schiff, ND. Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol. 10, 99114. (2014)Google Scholar
Giacino, J, Fins, JJ, Machado, A, Schiff, ND. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: challenges and opportunities. Neuromodulation. 15, 339349 (2012)Google Scholar
Giber, K, Diana, MA, Plattner, V, Dugué, GP, Bokor, H, Rousseau, CV, Maglóczky, Z, Havas, L, Hangya, B, Wildner, H, Zeilhofer, HU, Dieudonné, S, Acsády, L. A subcortical inhibitory signal for behavioral arrest in the thalamus. Nat Neurosci. 18, 562568 (2015)Google Scholar
Glenn, LL, Steriade, M. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J Neurosci. 2, 12871404 (1982)Google Scholar
Gottshall, JL, Adams, ZM, Forgacs, PB, Schiff, ND. Daytime central thalamic deep brain stimulation modulates sleep dynamics in the severely injured brain: mechanistic insights and a novel framework for alpha-delta sleep generation. Front Neurol. 10, 20 (2019)Google Scholar
Grillner, S, Hellgren, J, Ménard, A, Saitoh, K, Wikström, MA. Mechanisms for selection of basic motor programs–roles for the striatum and pallidum. Trends Neurosci. 28, 364370. (2005)Google Scholar
Gronewegen, H, Berendse, H. The specificity of the “nonspecific” midline and intralaminar thalamic nuclei. Trends Neurosci. 17, 5266. (1994)Google Scholar
Guo, ZV, Inagaki, HK, Daie, K, Druckmann, S, Gerfen, CR, Svoboda, K. Maintenance of persistent activity in a frontal thalamocortical loop. Nature. 545, 181186. 2017Google Scholar
Heckers, S, Geula, C, Mesulam, MM. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol. 325, 6882 (1992)Google Scholar
Hikosaka, O, Sakamoto, M, Usui, S. Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol. 61, 814832 (1989)Google Scholar
Hindman, J, Bowren, MD, Bruss, J, Wright, B, Geerling, JC, Boes, AD. Thalamic strokes that severely impair arousal extend into the brainstem. Ann Neurol. 84, 926930 (2018)Google Scholar
Hosobuchi, Y, Yingling, C. The treatment of prolonged coma with neurostimulation. In: Devinsky, O, Beric, A, Dogali, M, eds., Electrical and Magnetic stimulation of the Brain and Spinal Cord. New York: Raven Press, pp. 247252 (1993)Google Scholar
Huerta-Ocampo, I, Hacioglu-Bay, H, Dautan, D, Mena-Segovia, J. Distribution of midbrain cholinergic axons in the thalamus. eNeuro. 7, ENEURO.0454-19.2019 (2020)Google Scholar
Jones, EG. A new view of the specific and non-specific thalamocortical connections. Adv Neurol. 77, 4971(1998a)Google Scholar
Jones, EG. Viewpoint: the core and matrix of thalamic organization. Neuroscience. 85, 331345 (1998b)Google Scholar
Jones, EG. The Thalamus, 2nd ed. Cambridge: Cambridge University Press (2007)Google Scholar
Jones, EG. Synchrony in the interconnected circuitry of the thalamus and cerebral cortex. Ann NY Acad Sci. 1157, 1023 (2009)Google Scholar
Kato, S, Fukabori, R, Nishizawa, K, Okada, K, Yoshioka, N, Sugawara, M, Maejima, Y, Shimomura, K, Okamoto, M, Eifuku, S, Kobayashi, K. Action selection and flexible switching controlled by the intralaminar thalamic neurons. Cell Rep. 22, 23702382 (2018)Google Scholar
Katz, DI, Alexander, MP, Mandell, AM. Dementia following strokes in the mesencephalon and diencephalon. Arch Neurol. 44, 11271133 (1987)Google Scholar
Kinomura, S, Larsson, J, Gulyás, B, Roland, PE. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science. 271, 512515 (1996)Google Scholar
Kolmac, C, Mitrofanis, J. Organization of the basal forebrain projection to the thalamus in rats. Neurosci Lett. 272, 151154 (1999)Google Scholar
Krolak-Salmon, P, Croisile, B, Houzard, C, Setiey, A, Girard-Madoux, P, Vighetto, A. Total recovery after bilateral paramedian thalamic infarct. Eur Neurol. 44, 216218 (2000)Google Scholar
Krout, KE, Loewy, AD, Westby, GW, Redgrave, P. Superiorcolliculus projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol. 431, 198216 (2001)Google Scholar
Kuczewski, N, Porcher, C, Ferrand, N, Fiorentino, H, Pellegrino, C, Kolarow, R, Lessmann, V, Medina, I, Gaiarsa, J-L. (2008) Backpropagating action potentials trigger dendritic release of BDNF during spontaneous network activity. J Neurosci. 28, 70137023 (2008)Google Scholar
Kundishora, AJ, Gummadavelli, A, Ma, C, Liu, M, McCafferty, C, Schiff, ND, Willie, JT, Gross, RE, Gerrard, J, Blumenfeld, H. Restoring conscious arousal during focal limbic seizures with deep brain stimulation. Cereb Cortex. 27, 19641975 (2017)Google Scholar
Larkum, ME, Waters, J, Sakmann, B, Helmchen, F. Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J Neurosci. 27, 89999008 (2007)Google Scholar
Larkum, ME, Zhu, JJ, Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature. 398, 338341 (1999)Google Scholar
Laureys, S, Schiff, ND. Coma and consciousness: paradigms (re)framed by neuroimaging. NeuroImage. 61, 478491 (2012)Google Scholar
Lemaire, JJ, Sontheimer, A, Pereira, B, Coste, J, Rosenberg, S, Sarret, C, Coll, G, Gabrillargues, J, Jean, B, Gillart, T, Coste, A, Roche, B, Kelly, A, Pontier, B, Feschet, F. Deep brain stimulation in five patients with severe disorders of consciousness. Ann Clin Transl Neurol. 5, 13721384 (2017)Google Scholar
Lin, TC, Lo, YC, Lin, HC, Li, SJ, Lin, SH, Wu, HF, Chu, MC, Lee, CW, Lin, IC, Chang, CW, Liu, YC, Chen, TC, Lin, YJ, Ian Shih, YY, Chen, YY. MR imaging central thalamic deep brain stimulation restored autistic-like social deficits in the rat. Brain Stimul. 12, 14101420 (2019)Google Scholar
Liu, J, Lee, HJ, Weitz, AJ, Fang, Z, Lin, P, Choy, MK, Fisher, R, Pinskiy, V, Tolpygo, A, Mitra, P, Schiff, ND, Lee, JH. Frequency-selective control of cortical and subcortical networks by central thalamus. eLife. 4, e09215 (2015)Google Scholar
Llinás, R, Ribary, U, Contreras, D, Pedroarena, C. The neuronal basis for consciousness. Philos Trans RSoc Lond B. 353, 18411849 (1998)Google Scholar
Llinás, RR, Ribary, U, Jeanmonod, D, Kronberg, E, Mitra, PP. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA. 96, 1522215227 (1999)Google Scholar
Llinás, R, Ribary, U, Joliot, M, Wang, XJ. Content and context in temporal thalamocortical binding. In: Buzsaki, G, Llinás, R, Singer, W, Berthoz, A, Christen, Y, eds., Temporal Coding in the Brain. Heidelberg: Springer, pp. 252272 (1994)Google Scholar
Llinás, R, Urbano, FJ, Leznik, E, Ramírez, RR, van Marle HJF rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 28, 325333 (2005)Google Scholar
Llinás, RR, Leznik, E, Urbano, FJ. Temporal binding via cortical coincidence detection of specific and nonspecific thalamocortical inputs: a voltage-dependent dye-imaging study in mouse brain slices. Proc Natl Acad Sci USA. 99, 449454 (2002)Google Scholar
Magrassi, L, Maggioni, G, Pistarini, C, Di Perri, C, Bastianello, S, Zippo, AG, Iotti, GA, Biella, GE, Imberti, R. Results of a prospective study (CATS) on the effects of thalamic stimulation in minimally conscious and vegetative state patients. J Neurosurg. 125, 972981 (2016)Google Scholar
Mair, R. On the role of thalamic pathology in diencephalic amnesia. Rev Neurosci. 5, 105140 (1994)Google Scholar
Mair, RG, Francoeur, MJ, Gibson, BM. Central thalamic-medial prefrontal control of adaptive responding in the rat: many players in the chamber. Front Behav Neurosci. 15, 642204 (2021)Google Scholar
Mair, RG, Hembrook, JR. Memory enhancement with event-related stimulation of the rostral intralaminar thalamic nuclei. J Neurosci. 28, 1429314300. (2008)Google Scholar
Mair, RG, Onos, KD, Hembrook, JR. Cognitive activation by central thalamic stimulation: the Yerkes-Dodson law revisited. Dose Response. 9, 313331 (2011)Google Scholar
Matsumoto, N, Minamimoto, T, Graybiel, AM, Kimura, M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol. 85, 960976 (2001)Google Scholar
Maxwell, WL, MacKinnon, MA, Smith, DH, McIntosh, TK, Graham, DI. Thalamic nuclei after human blunt head injury. J Neuropathol Exp Neurol. 65, 478488 (2006)Google Scholar
Mennemeier, M, Crosson, B, Williamson, DJ, Nadeau, SE, Fennell, E, Valenstein, E, Heilman, KM. Tapping, talking and the thalamus: possible influence of the intralaminar nuclei on basal ganglia function. Neuropsychologia. 35, 183193 (1997)Google Scholar
Minamimoto, T, Kimura, M. Participation of the thalamic CM-Pf complex in attentional orienting. J Neurophysiol. 87, 30903101 (2002)Google Scholar
Minamimoto, T, La Camera, G, Richmond, BJ. Measuring and modeling the interaction among reward size, delay to reward, and satiation level on motivation in monkeys. J Neurophysiol. 101, 437447 (2009)Google Scholar
Morel, A, Liu, J, Wannier, T, Jeanmonod, D, Rouiller, EM. Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey. Eur J Neurosci. 21, 10071029 (2005)Google Scholar
Moruzzi, G, Magoun, HW. Brainstem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol. 1, 455473 (1949)Google Scholar
Münkle, MC, Waldvogel, HJ, Faull, RL. Calcium-binding protein immunoreactivity delineates the intralaminar nuclei of the thalamus in the human brain. Neuroscience. 90, 485491 (1999)Google Scholar
Münkle, MC, Waldvogel, HJ, Faull, RL. The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. J Chem Neuroanat. 19, 155173 (2000)Google Scholar
Nagai, Y, Critchley, HD, Featherstone, E, Fenwick, PB, Trimble, MR, Dolan, RJ. Brain activity relating to the contingent negative variation: an fMRI investigation. Neuroimage. 21, 12321241 (2004)Google Scholar
Naito, E, Kinomura, S, Geyer, S, Kawashima, R, Roland, PE, Zilles, K. Fast reaction to different sensory modalities activates common fields in the motor areas, but the anterior cingulate cortex is involved in the speed of reaction. J Neurophysiol. 83, 17011709 (2000)Google Scholar
Narayanan, NS, Cavanagh, JF, Frank, MJ, Laubach, M. Common medial frontal mechanisms of adaptive control in humans and rodents. Nat Neurosci. 16, 18881895 (2013)Google Scholar
Newman, DB, Ginsberg, CY. Brainstem reticular nuclei that project to the thalamus in rats: a retrograde tracer study. Brain Behav Evol. 44, 139 (1994)Google Scholar
Oke, AF, Carver, LA, Gouvion, CM, Adams, RN. Three-dimensional mapping of norepinephrine and serotonin in human thalamus. Brain Res. 763, 6978 (1997)Google Scholar
Parvizi, J, Damasio, AR. Neuroanatomical correlates of brainstem coma. Brain. 126, 15241536 (2003)Google Scholar
Paus, T, Zatorre, R, Hofle, N, Caramanos, Z, Gotman, J, Petrides, M, Evans, A. Time-related changes in Neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cog Neurosci. 9, 392408 (1997)Google Scholar
Pfaff, D. Brain Arousal and Information Processing. Cambridge, MA: Harvard University Press (2005)Google Scholar
Plum, F, Posner, J. Diagnosis of Stupor and Coma. Philadelphia: F.A. Davis. (1966)Google Scholar
Posner, J, Saper, C, Schiff, ND, Claassen, J. Plum and Posner’s Diagnosis and Treatment of Stupor and Coma, 5th ed. Oxford: Oxford University Press (2019)Google Scholar
Purpura, K, Schiff, ND. The thalamic intralaminar nuclei: a role in visual awareness. Neuroscientist. 3, 815 (1997)Google Scholar
Redinbaugh, MJ, Phillips, JM, Kambi, NA, Mohanta, S, Andryk, S, Dooley, GL, Afrasiabi, M, Raz, A, Saalmann, YB. Thalamus modulates consciousness via layer-specific control of cortex. Neuron. 106, 66–75.e12 (2020)Google Scholar
Ribeiro, S, Mello, CV, Velho, T, Gardner, TJ, Jarvis, ED, Pavlides, C. J Neurosci. 22, 1091410923. (2002)Google Scholar
Rieck, RW, Ansari, MS, Whetsell, WO Jr, Deutch, AY, Kessler, RM. Distribution of dopamine D2-like receptors in the human thalamus: autoradiographic and PET studies. Neuropsychopharmacology. 29, 362372 (2004)Google Scholar
Rubio-Garrido, P, Pérez-de-Manzo, F, Clascá, F. Calcium-binding proteins as markers of layer-I projecting vs. deep layer-projecting thalamocortical neurons: a double-labeling analysis in the rat. Neuroscience. 149, 242250 (2007)Google Scholar
Sadikot, AF, Parent, A, Smith, Y, Bolam, JP. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol. 320, 228242 (1992)Google Scholar
Sanford, LD, Morrison, AR, Ball, WA, Ross, RJ, Mann, GL. Varying expressions of alerting mechanisms in wakefulness and across sleep states. Electroencephalogr Clin Neurophysiol. 82, 458468 (1992)Google Scholar
Saper, CB, Scammell, TE, Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature. 437, 12571263 (2005)Google Scholar
Scannell, JW, Burns, GA, Hilgetag, CC, O’Neil, MA, Young, MP. The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex. 9, 277299 (1999)Google Scholar
Schiff, ND. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann NY Acad Sci. 1129, 105118 (2008)Google Scholar
Schiff, ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci. 33, 19 (2010)Google Scholar
Schiff, ND. Posterior medial corticothalamic connectivity and consciousness. Ann Neurol. 72, 305306. (2012)Google Scholar
Schiff, ND. Central thalamic deep brain stimulation to support anterior forebrain mesocircuit function in the severely injured brain. J Neural Transm (Vienna). 123, 797806. (2016)Google Scholar
Schiff, ND. Resolving the role of the paramedian thalamus in forebrain arousal mechanisms. Ann Neurol. 84, 812813 (2018)Google Scholar
Schiff, ND. Central lateral thalamic nucleus stimulation awakens cortex via modulation of cross-regional, laminar-specific activity during general anesthesia. Neuron. 106, 13 (2020)Google Scholar
Schiff, ND, Giacino, JT, Butson, CR, Baker, JL, Bergin, M, Bronte-Stewart, HM, Choi, EY, DeGeorge, L, Gerber, LM, Janson, AP, Shah, SA, Su, J, Kolakowsky-Hayner, SA, Fins, JJ, Machado, AG, Rutt, BK, Henderson, JM. Central thalamic brain stimulation modulates executive function and fatigue in a patient with severe to moderate traumatic brain injury. In Fifth Annual Brain Initiative Investigators Meeting Abstract book [Abstract S-124] (2019)Google Scholar
Schiff, ND, Giacino, JT, Butson, CR, Baker, JL, Bergin, M, Bronte-Stewart, HM, Choi, EY, DeGeorge, L, Gerber, LM, Janson, AP, Shah, SA, Su, J, Kolakowsky-Hayner, SA, Fins, JJ, Machado, AG, Rutt, BK, Henderson, JM. Central thalamic brain stimulation improves executive function and mental fatigue in severe to moderate traumatic brain injury. In Seventh Annual Brain Initiative Investigators Meeting [3051] (2021)Google Scholar
Schiff, ND, Giacino, JT, Kalmar, K, Victor, JD, Baker, K, Gerber, M, Fritz, B, Eisenberg, B, Biondi, T, O’Connor, J, Kobylarz, EJ, Farris, S, Machado, A, McCagg, C, Plum, F, Fins, JJ, Rezai, AR. Behavioral improvements with thalamic stimulation after severe traumatic brain injury. Nature. 448, 600603 (2007)Google Scholar
Schiff, ND, Nauvel, T, Victor, JD. Large-scale brain dynamics in disorders of consciousness. Curr Opin Neurobiol. 25, 714 (2014)Google Scholar
Schiff, ND, Plum, F. The role of arousal and “gating” systems in the neurology of impaired consciousness. J Clin Neurophysiol. 17, 438452 (2000)Google Scholar
Schiff, ND, Purpura, KP. Towards a neurophysiological basis for cognitive neuromodulation. Thalamus Relate Syst. 2, 5569 (2002)Google Scholar
Schiff, ND, Shah, SA, Hudson, AE, Nauvel, T, Kalik, SF, Purpura, KP. Gating of attentional effort through the central thalamus. J Neurophysiol. 109, 11521163 (2013)Google Scholar
Schlag, J, Schlag-Rey, M. Visuomotor functions of central thalamus in monkey. II. Unit activity related to visual events, targeting, and fixation. J Neurophysiol. 51, 11751195. (1984)Google Scholar
Schlag, J, Schlag-Rey, MR. Role of the central thalamus in gaze control. Prog Brain Res. 64, 191201 (1986)Google Scholar
Schlag-Rey, M, Schlag, J. Visuomotor functions of central thalamus in monkey. I. Unit activity related to spontaneous eye movements. J Neurophysiol. 51, 11491174. 1984Google Scholar
Schmitt, LI, Wimmer, RD, Nakajima, M, Happ, M, Mofakham, S, Halassa, MM. Thalamic amplification of cortical connectivity sustains attentional control. Nature. 545, 219223 (2017)Google Scholar
Shah, S, Mohamadpour, M, Askin, G, Nakase-Richardson, R, Stokic, DS, Sherer, M, Yablon, SA, Schiff, ND. Focal electroencephalographic changes index post-traumatic confusion and outcome. J Neurotrauma. 34, 26912699 (2017)Google Scholar
Shah, SA, Goldin, Y, Conte, MM, Goldfine, AM, Mohamadpour, M, Fidali, BC, Cicerone, K, Schiff, ND. Executive attention deficits after traumatic brain injury reflect impaired recruitment of resources. Neuroimage Clin. 14, 233241 (2017)Google Scholar
Shah, SA, Schiff, ND. Central thalamic deep brain stimulation for cognitive neuromodulation: a review of proposed mechanisms and investigational studies. Eur J Neurosci. 32, 11351144 (2010)Google Scholar
Shirvalkar, P, Seth, M, Schiff, ND, Herrera, DG. Cognitive enhancement with central thalamic electrical stimulation. Proc Nat Acad Sci USA. 103, 1700717012 (2006)Google Scholar
Silva, LR, Amitai, Y, Connors, BW. Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science. 251, 432435 (1991)Google Scholar
Smiley, JF, Subramanian, M, Mesulam, MM. Monaminergic-cholinergi interactions in the primate basal forebrain. Neuroscience. 93, 817829. (1999)Google Scholar
Smith, Y, Raju, D, Nanda, B, Pare, JF, Galvan, A, Wichmann, T. The thalamostriatal systems: anatomical and functional organization in normal and parkinsonian states. Brain Res Bull. 78, 6068 (2009)Google Scholar
Steriade, M. Neocortical neurons are flexible entities. Trends Neurosci. 5, 121134. (2001)Google Scholar
Steriade, M, Contreras, D, Amzica, F, Timofeev, I. Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J Neurosci. 16, 27882808 (1996)Google Scholar
Steriade, M, Curro, R, Contreras, D. Electrophysiological properties of intralaminar thalamocortical cells discharging rhythmic (40 Hz) spikebursts at 1000 Hz during waking and rapid eye movement sleep. Neuroscience. 56, 19 (1993)Google Scholar
Steriade, M, Dossi, RC, Nuñez, A. Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci. 10, 32003217 (1991)Google Scholar
Steriade, M, Dossi, RC, Paré, D, Oakson, G. Fast oscillations (20–40 Hz) in thalamocortical systems and their potentiation by mesopontine cholinergic nuclei in the cat. Proc Natl Acad Sci USA. 88, 43964400 (1991)Google Scholar
Steriade, M, Glenn, LL. Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J Neurophysiol. 48, 352371 (1982)Google Scholar
Sturm, V, Kuhner, A, Schmitt, HP, Assmus, H, Stock, G. Chronic electrical stimulation of the thalamic unspecific activating system in a patient with coma due to midbrain and upper brain stem infarction. Acta Neurochirurgica. 47, 235244 (1979)Google Scholar
Stuss, DT, Guberman, A, Nelson, R, Larochelle, S. The neuropsychology of paramedian thalamic infarction. Brain Cogn. 8, 348378 (1988)Google Scholar
Sutcliff, JG, De Lecea, L. The hypocretins: setting the arousal threshold. Nat Rev Neurosci. 3, 339349 (2002)Google Scholar
Suzuki, M, Larkum, ME. General Anesthesia Decouples Cortical Pyramidal Neurons. Cell. 180, 666–676.e13 (2020)Google Scholar
Tabansky, I, Quinkert, AW, Rahman, N, Muller, SZ, Lofgren, J, Rudling, J, Pfaff, DW. Temporally-patterned deep brain stimulation in a mouse model of multiple traumatic brain injury. Behav Brain Res. 273, 123132 (2014)Google Scholar
Tasserie, J, Uhrig, L, Sitt, JD, Dupont, M, Deheane, S, Jayarra, M. Thalamic stimulation modulates consciousness in anesthetized macaques by restoring spontaneous and evoked fMRI activity in a cortical global neuronal workspace. In Society for Neuroscience Abstracts [Abstract 420.02 SFN] (2019)Google Scholar
Thengone, DJ, Voss, HU, Fridman, EA, Schiff, ND. Local changes in network structure contribute to late communication recovery after severe brain injury. Sci Transl Med. 8, 368re5 (2016)Google Scholar
Thompson, R. Centrencephalic theory, generalized learning system and subcortical dementia. Ann NY Acad Sci. 702, 197223. (1993)Google Scholar
Thompson, RF. Foundations of Physiological Psychology. New York: Joanna Cotler Books (1967)Google Scholar
Tsai, ST, Chen, LJ, Wang, YJ, Chen, SY, Tseng, GF. Rostral intralaminar thalamic deep brain stimulation triggered cortical and hippocampal structural plasticity and enhanced spatial memory. Stereotact Funct Neurosurg. 94, 108117 (2016)Google Scholar
Tsai, ST, Chen, SY, Lin, SZ, Tseng, GF. Rostral intralaminar thalamic deep brain stimulation ameliorates memory deficits and dendritic regression in beta-amyloid-infused rats. Brain Struct Funct. 225, 751761 (2020)Google Scholar
Tsubokawa, T, Yamamoto, T, Katayama, Y, Hirayama, T, Maejima, S, Moriya, T. Deep-brain stimulation in a persistent vegetative state: follow-up results and criteria for selection of candidates. Brain Inj. 4, 315327 (1990)Google Scholar
Van Der Werf, YD, Weerts, JG, Jolles, J, Witter, MP, Lindeboom, J, Scheltens, P. Neuropsychological correlates of a right unilateral lacunar thalamic infarction. J Neurol Neurosurg Psychiatry. 66, 3642 (1999)Google Scholar
Van der Werf, YD, Witter, MP, Groenewegen, HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev. 39, 107140 (2002)Google Scholar
Vanderwolf, CH, Stewart, DJ. Thalamic control of neocortical activation: a critical re-evaluation. Brain Res Bull. 20, 529538 (1988)Google Scholar
Vogt, BA, Hof, PR, Friedman, DP, Sikes, RW, Vogt, LJ. Norepinephrinergic afferents and cytology of the macaque monkey midline, mediodorsal, and intralaminar thalamic nuclei. Brain Struct Funct. 212, 465479 (2008)Google Scholar
von Domburg, PH, ten Donkelaar, HJ, Notermans, SL. Akinetic mutism with bithalamic infarction. Neurophysiological correlates. J Neurol Sci. 139, 5865 (1996)Google Scholar
Voss, HU, Uluç, AM, Dyke, JP, Watts, R, Kobylarz, EJ, McCandliss, BD, Heier, LA, Beattie, BJ, Hamacher, KA, Vallabhajosula, S, Goldsmith, SJ, Ballon, D, Giacino, JT, Schiff, ND. Possible axonal regrowth in late recovery from minimally conscious state.J Clin Invest. 116, 20052011 (2006)Google Scholar
Watson, RT, Valenstein, E, Heilman, KM. Thalamic neglect. Possible role of the medial thalamus and nucleus reticularis in behavior. Arch Neurol. 38, 501506 (1981)Google Scholar
Williams, ST, Conte, MM, Goldfine, AM, Noirhomme, Q, Gosseries, O, Thonnard, M, Beattie, B, Hersh, J, Katz, DI, Victor, JD, Laureys, S, Schiff, ND. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury. eLife. 2, e01157 (2013)Google Scholar
Wyder, MT, Massoglia, DP, Stanford, TR. Quantitative assessment of the timing and tuning of visual-related, saccade-related, and delay period activity in primate central thalamus. J Neurophysiol. 90, 20292052 (2003)Google Scholar
Wyder, MT, Massoglia, DP, Stanford, TR. Contextual modulation of central thalamic delay-period activity: representation of visual and saccadic goals. J Neurophysiol. 91, 26282648 (2004)Google Scholar
Xu, J, Galardi, MM, Pok, B, Patel, KK, Zhao, CW, Andrews, JP, Singla, S, McCafferty, CP, Feng, L, Musonza, ET, Kundishora, AJ, Gummadavelli, A, Gerrard, JL, Laubach, M, Schiff, ND, Blumenfeld, H. Thalamic stimulation improves postictal cortical arousal and behavior. J Neurosci. 40, 1370–1320 (2020)Google Scholar
Yamamoto, T, Katayama, Y. Deep brain stimulation therapy for the vegetative state. Neuropsychol Rehabil. 15, 406413 (2005)Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Arousal
  • Edited by Michael M. Halassa, Massachusetts Institute of Technology
  • Book: The Thalamus
  • Online publication: 12 August 2022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Arousal
  • Edited by Michael M. Halassa, Massachusetts Institute of Technology
  • Book: The Thalamus
  • Online publication: 12 August 2022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Arousal
  • Edited by Michael M. Halassa, Massachusetts Institute of Technology
  • Book: The Thalamus
  • Online publication: 12 August 2022
Available formats
×