Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T06:33:11.184Z Has data issue: false hasContentIssue false

Section 2: - Anatomy

Published online by Cambridge University Press:  12 August 2022

Michael M. Halassa
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Thalamus , pp. 27 - 90
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Asanuma, C., Thach, W.T., & Jones, E.G. (1983) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. Rev., 5, 267297.CrossRefGoogle Scholar
Barsy, B., Kocsis, K., Magyar, A., Babiczky, Á., Szabó, M., Veres, J.M., Hillier, D., Ulbert, I., Yizhar, O., & Mátyás, F. (2020) Associative and plastic thalamic signaling to the lateral amygdala controls fear behavior. Nat. Neurosci., 23, 625637.CrossRefGoogle Scholar
Barthó, P., Freund, T.F., & Acsády, L. (2002) Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur. J. Neurosci., 16, 9991014.Google Scholar
Barthó, P., Slézia, A., Varga, V., Bokor, H., Pinault, D., Buzsáki, G., & Acsády, L. (2007) Cortical control of zona incerta. J. Neurosci., 27, 16701681.Google Scholar
Bender, D.B. (1981) Retinotopic organization of macaque pulvinar. J. Neurophysiol., 46, 672693.Google Scholar
Bennett, C., Gale, S.D., Garrett, M.E., Newton, M.L., Callaway, E.M., Murphy, G.J., & Olsen, S.R. (2019) Higher-order thalamic circuits channel parallel streams of visual information in mice. Neuron, 102, 477–492.e5.CrossRefGoogle ScholarPubMed
Bickford, M.E. (2019) Synaptic organization of the dorsal lateral geniculate nucleus. Eur. J. Neurosci., 49, 938947.CrossRefGoogle Scholar
Bickford, M.E., Zhou, N., Krahe, T.E., Govindaiah, G., & Guido, W. (2015) Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci., 35, 1052310534.Google Scholar
Blot, A., Roth, M., Gasler, I., Javadzadeh, M., Imhof, F., & Hofer, S. (2020) Visual intracortical and transthalamic pathways carry distinct information to cortical areas. bioRxiv, 2020.07.06.189902.CrossRefGoogle Scholar
Blot, A., Roth, M.M., Gasler, I., Javadzadeh, M., Imhof, F., & Hofer, S.B. (2021) Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron, 109, 19962008.Google Scholar
Bodor, Á.L., Giber, K., Rovó, Z., Ulbert, I., & Acsády, L. (2008) Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J. Neurosci., 28, 30903102.Google Scholar
Bokor, H., Acsády, L., & Deschênes, M. (2008) Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. J. Neurosci., 28, 51695177.Google Scholar
Bokor, H., Frère, S.G.A., Eyre, M.D., Slézia, A., Ulbert, I., Lüthi, A., & Acsády, L. (2005) Selective GABAergic control of higher-order thalamic relays. Neuron, 45, 929940.Google Scholar
Bokor, H., Hádinger, N., & Acsády, L. (2016) Efficient cortical control of basal ganglia recipient motor thalamus. Soc. Neurosci. Abs., 720.18/SS16.Google Scholar
Bourassa, J., & Desche ̂nes, M. (1995) Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253263.CrossRefGoogle ScholarPubMed
Bourassa, J., Pinault, D., & Deschênes, M. (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single‐fibre study using biocytin as an anterograde tracer. Eur. J. Neurosci., 7, 1930.Google Scholar
Bubb, E.J., Kinnavane, L., & Aggleton, J.P. (2017) Hippocampal–diencephalic–cingulate networks for memory and emotion: an anatomical guide. Brain Neurosci. Adv., 1, 239821281772344.Google Scholar
Budisantoso, T., Matsui, K., Kamasawa, N., Fukazawa, Y., & Shigemoto, R. (2012) Mechanisms underlying signal filtering at a multisynapse contact. J. Neurosci., 32, 23572376.Google Scholar
Castro-Alamancos, M.A. (2002a) Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo. J. Physiol., 539, 567578.CrossRefGoogle ScholarPubMed
Castro-Alamancos, M.A. (2002b) Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. J. Neurophysiol., 87, 946953.CrossRefGoogle ScholarPubMed
Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A., & Cull-Candy, S.G. (2005) Changes in synaptic structure underlie the developmental speeding of AMPA receptor-mediated EPSCs. Nat. Neurosci., 8, 13101318.Google Scholar
Chen, X., Aslam, M., Gollisch, T., Allen, K., & Von Engelhardt, J. (2018) CKAMP44 modulates integration of visual inputs in the lateral geniculate nucleus. Nat. Commun., 9, 261.Google Scholar
Clemente-Perez, A., Makinson, S.R., Higashikubo, B., Brovarney, S., Cho, F.S., Urry, A., Holden, S.S., Wimer, M., Dávid, C., Fenno, L.E., Acsády, L., Deisseroth, K., & Paz, J.T. (2017) Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep., 19, 21302142.Google Scholar
Colonnier, M., & Guillery, R.W. (1964) Synaptic organization in the lateral geniculate nucleus of the monkey. Zeitschrift für Zellforsch. und Mikroskopische Anat., 62, 333355.CrossRefGoogle ScholarPubMed
Constantinople, C.M., & Bruno, R.M. (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron, 69, 10611068.CrossRefGoogle ScholarPubMed
Cooper, H.M., Herbin, M., & Nevo, E. (1993) Visual system of a naturally microphthalmic mammal: The blind mole rat, Spalax ehrenbergi. J. Comp. Neurol., 328, 313350.Google Scholar
De Zeeuw, C.I., Lisberger, S.G., & Raymond, J.L. (2021) Diversity and dynamism in the cerebellum. Nat. Neurosci., 24, 160167.Google Scholar
Dekker, J.J., & Kuypers, H.G.J.M. (1976) Morphology of rat’s AV thalamic nucleus in light and electron microscopy. Brain Res., 117, 387398.CrossRefGoogle ScholarPubMed
Deschênes, M., Bourassa, J., & Pinault, D. (1994) Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res., 664, 215219.CrossRefGoogle Scholar
Deschênes, M., Timofeeva, E., & Lavallée, P. (2003) The relay of high-frequency sensory signals in the whisker-to-barreloid pathway. J. Neurosci., 23, 67786787.Google Scholar
Deschênes, M., Veinante, P., & Zhang, Z.W. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res. Brain Res. Rev., 28, 286308.Google Scholar
Diamond, M.E., Armstrong‐James, M., Budway, M.J., & Ebner, F.F. (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J. Comp. Neurol., 319, 6684.Google Scholar
Diamond, M.E., Armstrong‐James, M., & Ebner, F.F. (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus. J. Comp. Neurol., 318, 462476.Google Scholar
Economo, M.N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L.T., Nguyen, T.N., Smith, K.A., Yao, Z., Wang, L., Gerfen, C.R., Chandrashekar, J., Zeng, H., Looger, L.L., & Svoboda, K. (2018) Distinct descending motor cortex pathways and their roles in movement. Nature, 563, 7984.CrossRefGoogle ScholarPubMed
Erişir, A., Van Horn, S.C., & Sherman, S.M. (1997) Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proc. Natl. Acad. Sci. U. S. A., 94, 15171520.Google Scholar
Friedlander, M.J., Lin, C.S., Stanford, L.R., & Sherman, S.M. (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J. Neurophysiol., 46, 80129.CrossRefGoogle ScholarPubMed
Gao, Z., Davis, C., Thomas, A.M., Economo, M.N., Abrego, A.M., Svoboda, K., De Zeeuw, C.I., & Li, N. (2018) A cortico-cerebellar loop for motor planning. Nature, 563, 113116.Google Scholar
Giber, K., Diana, M.A., M Plattner, V., Dugué, G.P., Bokor, H., Rousseau, C. V., Maglóczky, Z., Havas, L., Hangya, B., Wildner, H., Zeilhofer, H.U., Dieudonné, S., & Acsády, L. (2015) A subcortical inhibitory signal for behavioral arrest in the thalamus. Nat. Neurosci., 18, 562568.Google Scholar
Goldberg, J.H., Farries, M.A., & Fee, M.S. (2013) Basal ganglia output to the thalamus: still a paradox. Trends Neurosci., 36, 695705.Google Scholar
Goodridge, J.P. & Taube, J.S. (1997) Interaction between the postsubiculum and anterior thalamus in the generation of head direction cell activity. J. Neurosci., 17, 93159330.Google Scholar
Groh, A., Bokor, H., Mease, R.A., Plattner, V.M., Hangya, B., Stroh, A., Deschênes, M., & Acsády, L. (2014) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb. Cortex, 24, 31673179.Google Scholar
Groh, A., de Kock, C.P.J., Wimmer, V.C., Sakmann, B., & Kuner, T. (2008) Driver or coincidence detector: modal switch of a corticothalamic giant synapse controlled by spontaneous activity and short-term depression. J. Neurosci., 28, 96529663.Google Scholar
Guillery, R.W. (1956) Degeneration in the post-commissural fornix and the mamillary peduncle of the ratNo Title. J. Anat., 90, 350370.Google Scholar
Guillery, R.W. & Sherman, S.M. (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron, 33, 163175.Google Scholar
Guillery, R.W. & Sherman, S.M. (2011) Branched thalamic afferents: what are the messages that they relay to the cortex? Brain Res. Rev., 66, 205219.CrossRefGoogle ScholarPubMed
Guo, Z. V., Inagaki, H.K., Daie, K., Druckmann, S., Gerfen, C.R., & Svoboda, K. (2017) Maintenance of persistent activity in a frontal thalamocortical loop. Nature, 545, 181186.Google Scholar
Hádinger, N., Bősz, E., Tóth, B., Vantomme, G., Lüthi, A., & Acsády, L. (2022) Region selective cortical control of the thalamic reticular nucleus. BioRxiv, 2022.01.17.476335. https://doi.org/10.1101/2022.01.17.476335Google Scholar
Halassa, M.M., & Acsády, L. (2016) Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci., 39, 680693.Google Scholar
Halassa, M.M., & Kastner, S. (2017) Thalamic functions in distributed cognitive control. Nat. Neurosci., 20, 16691679.Google Scholar
Hamos, J.E., VanHorn, S.C., Raczkowski, D., & Sherman, S.M. (1987) Synaptic circuits involving an individual retinogeniculate axon in the cat. J. Comp. Neurol., 259, 165192.CrossRefGoogle Scholar
Harding, B.N., & Powell, T.P. (1977) An electron microscopic study of the centre-median and ventrolateral nuclei of the thalamus in the monkey. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 279, 357412.Google Scholar
Harris, J.A., Mihalas, S., Hirokawa, K.E., Whitesell, J.D., Choi, H., Bernard, A., Bohn, P., Caldejon, S., Casal, L., Cho, A., Feiner, A., Feng, D., Gaudreault, N., Gerfen, C.R., Graddis, N., Groblewski, P.A., Henry, A.M., Ho, A., Howard, R., Knox, J.E., Kuan, L., Kuang, X., Lecoq, J., Lesnar, P., Li, Y., Luviano, J., McConoughey, S., Mortrud, M.T., Naeemi, M., Ng, L., Oh, S.W., Ouellette, B., Shen, E., Sorensen, S.A., Wakeman, W., Wang, Q., Wang, Y., Williford, A., Phillips, J.W., Jones, A.R., Koch, C., & Zeng, H. (2019) Hierarchical organization of cortical and thalamic connectivity. Nature, 575, 195202.Google Scholar
Hirsch, J.A. (2003) Synaptic physiology and receptive field structure in the early visual pathway of the cat. In Cerebral Cortex. Oxford University Press, pp. 6369.Google Scholar
Hoerder-Suabedissen, A., Hayashi, S., Upton, L., Nolan, Z., Casas-Torremocha, D., Grant, E., Viswanathan, S., Kanold, P.O., Clascá, F., Kim, Y., & Molnár, Z. (2018) Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb. Cortex, 28, 18821897.CrossRefGoogle ScholarPubMed
Hoogland, P. V, Wouterlood, F.G., Welker, E., & Van der Loos, H. (1991) Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L). Exp. Brain Res., 87, 159172.Google Scholar
Ilinsky, I.A., Jouandet, M.L., & Goldman-Rakic, P.S. (1985) Organization of the nigrothalamocortical system in the rhesus monkey. J. Comp. Neurol., 236, 315330.CrossRefGoogle ScholarPubMed
Ilinsky, I.A., Yi, H., & Kultas-Ilinsky, K. (1997) Mode of termination of pallidal afferents to the thalamus: a light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. J. Comp. Neurol., 386, 601612.3.0.CO;2-6>CrossRefGoogle Scholar
Ito, H.T., Moser, E.I., & Moser, M.B. (2018) Supramammillary nucleus modulates spike-time coordination in the prefrontal-thalamo-hippocampal circuit during navigation. Neuron, 99, 576–587.e5.Google Scholar
Ito, H.T., Zhang, S.J., Witter, M.P., Moser, E.I., & Moser, M.B. (2015) A prefrontal-thalamo-hippocampal circuit for goal-directed spatial navigation. Nature, 522, 5055.Google Scholar
Jacobson, S., & Trojanowski, J.Q. (1975) Corticothalamic neurons and thalamocortical terminal fields: An investigation in rat using horseradish peroxidase and autoradiography. Brain Res., 85, 385401.Google Scholar
Jones, E.G. (2007a) Descriptions of thalamus in representative mammals. In The Thalamus, 2nd ed. Cambridge University Press, pp. 4387.Google Scholar
Jones, E.G. (2007b) Principles of thalamic organization. In The Thalamus, 2nd ed. Cambridge University Press, pp. 87171.Google Scholar
Jones, E.G. (2007c) Thalamic neurons, synaptic organization, and functional properties. In The Thalamus, 2nd ed. Cambridge University Press, pp. 171318.Google Scholar
Jones, E.G., & Rockel, A.J. (1971) The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus. Zeitschrift für Zellforsch. und Mikroskopische Anat., 113, 4466.Google Scholar
Kakei, S., Na, J., & Shinoda, Y. (2001) Thalamic terminal morphology and distribution of single corticothalamic axons originating from layers 5 and 6 of the cat motor cortex. J. Comp. Neurol., 437, 170185.Google Scholar
Kenigfest, N.B., Repérant, J., Rio, J. ‐P, Belekhova, M.G., Tumanova, N.L., Ward, R., Vesselkin, N.P., Herbin, M., Chkeidze, D.D., & Ozirskaya, E. V. (1995) Fine structure of the dorsal lateral geniculate nucleus of the turtle, Emys orbicularis: A Golgi, combined hrp tracing and GABA immunocytochemical study. J. Comp. Neurol., 356, 595614.Google Scholar
Kirouac, G.J. (2015) Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci. Biobehav. Rev., 56, 315329.CrossRefGoogle ScholarPubMed
Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T., & Miyamoto, A. (2013) Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nat. Neurosci., 16, 749755.Google Scholar
Krettek, J.E. & Price, J.L. (1977) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J. Comp. Neurol., 172, 687722.Google Scholar
Kuroda, M., & Price, J.L. (1991) Synaptic organization of projections from basal forebrain structures to the mediodorsal thalamic nucleus of the rat. J. Comp. Neurol., 303, 513533.Google Scholar
Lavallée, P., Urbain, N., Dufresne, C., Bokor, H., Acsády, L., & Deschênes, M. (2005) Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. J. Neurosci., 25, 74897498.CrossRefGoogle ScholarPubMed
Li, Y., Lopez-Huerta, V.G., Adiconis, X., Levandowski, K., Choi, S., Simmons, S.K., Arias-Garcia, M.A., Guo, B., Yao, A.Y., Blosser, T.R., Wimmer, R.D., Aida, T., Atamian, A., Naik, T., Sun, X., Bi, D., Malhotra, D., Hession, C.C., Shema, R., Gomes, M., Li, T., Hwang, E., Krol, A., Kowalczyk, M., Peça, J., Pan, G., Halassa, M.M., Levin, J.Z., Fu, Z., & Feng, G. (2020) Distinct subnetworks of the thalamic reticular nucleus. Nature, 583, 819824.Google Scholar
Liu, X.B., Honda, C.N., & Jones, E.G. (1995) Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J. Comp. Neurol., 352, 6991.Google Scholar
Lovett-Barron, M., Kaifosh, P., Kheirbek, M.A., Danielson, N., Zaremba, J.D., Reardon, T.R., Turi, G.F., Hen, R., Zemelman, B. V., & Losonczy, A. (2014) Dendritic inhibition in the hippocampus supports fear learning. Science, 343, 857863.Google Scholar
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H., & Fuchs, A.F. (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol., 164, 287303.Google Scholar
Maendly, R., Ruegg, D.G., Wiesendanger, M., Lagowska, J., & Hess, B. (1981) Thalamic relay for group I muscle afferents of forelimb nerves in the monkey. J. Neurophysiol., 46, 901917.CrossRefGoogle Scholar
Maglóczky, Z., Acsády, L., & Freund, T.F. (1994) Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus, 4, 322334.Google Scholar
Martinez-Garcia, R.I., Voelcker, B., Zaltsman, J.B., Patrick, S.L., Stevens, T.R., Connors, B.W., & Cruikshank, S.J. (2020) Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature, 583, 813818.Google Scholar
Mason, A., Ilinsky, I.A., Beck, S., & Kultas-Ilinsky, K. (1996) Reevaluation of synaptic relationships of cerebellar terminals in the ventral lateral nucleus of the rhesus monkey thalamus based on serial section analysis and three-dimensional reconstruction. Exp. Brain Res., 109, 219239.Google Scholar
Mátyás, F., Komlósi, G., Babiczky, Á., Kocsis, K., Barthó, P., Barsy, B., Dávid, C., Kanti, V., Porrero, C., Magyar, A., Szűcs, I., Clascá, F., & Acsády, L. (2018) A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nat. Neurosci., 21, 15511562.Google Scholar
Mátyás, F., Lee, J., Shin, H.-S., & Acsády, L. (2014) The fear circuit of the mouse forebrain: connections between the mediodorsal thalamus, frontal cortices and basolateral amygdala. Eur. J. Neurosci., 39, 18101823.Google Scholar
Mátyás, F., Sreenivasan, V., Marbach, F., Wacongne, C., Barsy, B., Mateo, C., Aronoff, R., & Petersen, C.C.H. (2010) Motor control by sensory cortex. Science, 330, 12401243.Google Scholar
Mikula, S., Manger, P.R., & Jones, E.G. (2008) The thalamus of the monotremes: Cyto- and myeloarchitecture and chemical neuroanatomy. Philos. Trans. R. Soc. B Biol. Sci., 363, 24152440.Google Scholar
Moore, B., Li, K., Kaas, J.H., Liao, C.C., Boal, A.M., Mavity-Hudson, J., & Casagrande, V. (2019) Cortical projections to the two retinotopic maps of primate pulvinar are distinct. J. Comp. Neurol., 527, 577588.Google Scholar
Moore, R.Y., Weis, R., & Moga, M.M. (2000) Efferent projections of the intergeniculate leaflet and the ventral lateral geniculate nucleus in the rat. J. Comp. Neurol., 420, 398418.Google Scholar
Morgan, J.L., Berger, D.R., Wetzel, A.W., & Lichtman, J.W. (2016) The Fuzzy logic of network connectivity in mouse visual thalamus. Cell, 165, 192206.Google Scholar
Negyessy, L., Hamori, J., & Bentivoglio, M. (1998) Contralateral cortical projection to the mediodorsal thalamic nucleus: origin and synaptic organization in the rat. Neuroscience, 84, 741753.Google Scholar
Ojima, H. (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb. Cortex, 4, 646663.Google Scholar
Otis, J.M., Zhu, M.H., Namboodiri, V.M.K., Cook, C.A., Kosyk, O., Matan, A.M., Ying, R., Hashikawa, Y., Hashikawa, K., Trujillo-Pisanty, I., Guo, J., Ung, R.L., Rodriguez-Romaguera, J., Anton, E.S., & Stuber, G.D. (2019) Paraventricular thalamus projection neurons integrate cortical and hypothalamic signals for cue-reward processing. Neuron, 103, 423–431.e4.Google Scholar
Pare, D., Dossi, R.C., & Steriade, M. (1991) Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat. J. Neurophysiol., 66, 11901204.Google Scholar
Pelzer, P., Horstmann, H., & Kuner, T. (2017) Ultrastructural and functional properties of a giant synapse driving the piriform cortex to mediodorsal thalamus projection. Front. Synaptic Neurosci., 9, 3.Google Scholar
Penzo, M.A., & Gao, C. (2021) The paraventricular nucleus of the thalamus: an integrative node underlying homeostatic behavior. Trends Neurosci., 44, 538549.Google Scholar
Percheron, G., Franqois, C., Talbi, B., Yelnik, J., & Ffnelon, G. (1996) The primate motor thalamus. Brain, 22, 93181.Google Scholar
Peyrache, A., Lacroix, M.M., Petersen, P.C., & Buzsáki, G. (2015) Internally organized mechanisms of the head direction sense. Nat. Neurosci., 18, 569575.Google Scholar
Pinault, D. (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res. Brain Res. Rev., 46, 131.Google Scholar
Pinault, D., & Deschênes, M. (1998) Projection and innervation patterns of individual thalamic reticular axons in the thalamus of the adult rat: a three-dimensional, graphic, and morphometric analysis. J. Comp. Neurol., 391, 180203.Google Scholar
Purushothaman, G., Marion, R., Li, K., & Casagrande, V.A. (2012) Gating and control of primary visual cortex by pulvinar. Nat. Neurosci., 15, 905912.CrossRefGoogle ScholarPubMed
Ralston, H.J. (1969) The synaptic organization of lemniscal projections to the ventrobasal thalamus of the cat. Brain Res., 14, 99115.Google Scholar
Reichova, I., & Sherman, S.M. (2004) Somatosensory corticothalamic projections: distinguishing drivers from modulators. J. Neurophysiol., 92, 21852197.Google Scholar
Rikhye, R. V., Wimmer, R.D., & Halassa, M.M. (2018) Toward an integrative theory of thalamic function. Annu. Rev. Neurosci., 41, 163183.Google Scholar
Rinvik, E., & Grofová, I. (1974a) Cerebellar projections to the nuclei ventralis lateralis and ventralis anterior thalami – Experimental electron microscopical and light microscopical studies in the cat. Anat. Embryol. (Berl)., 146, 95111.Google Scholar
Rinvik, E., & Grofová, I. (1974b) Light and electron microscopical studies of the normal nuclei ventralis lateralis and ventralis anterior thalami in the cat. Anat. Embryol. (Berl)., 146, 5793.Google Scholar
Rollenhagen, A., & Lübke, J.H.R. (2006) The morphology of excitatory central synapses: From structure to function. Cell Tissue Res., 326, 221237.Google Scholar
Rompani, S.B., Müllner, F.E., Wanner, A., Zhang, C., Roth, C.N., Yonehara, K., & Roska, B. (2017) Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron, 93, 767–776.e6.Google Scholar
Rouiller, E.M., & Welker, E. (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res. Bull., 53, 727741.Google Scholar
Rovó, Z., Ulbert, I., & Acsády, L. (2012) Drivers of the primate thalamus. J. Neurosci., 32, 1789417908.Google Scholar
Schmitt, L.I., Wimmer, R.D., Nakajima, M., Happ, M., Mofakham, S., & Halassa, M.M. (2017) Thalamic amplification of cortical connectivity sustains attentional control. Nature, 545, 219223.Google Scholar
Schwartz, M.L., Dekker, J.J., & Goldman‐Rakic, P.S. (1991) Dual mode of corticothalamic synaptic termination in the mediodorsal nucleus of the rhesus monkey. J. Comp. Neurol., 309, 289304.Google Scholar
Sherman, S.M., & Guillery, R.W. (1996) Functional organization of thalamocortical relays. J. Neurophysiol., 76, 13671395.Google Scholar
Sherman, S.M., & Guillery, R.W. (1998) On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators.Proc. Natl. Acad. Sci. USA, 95, 71217126.Google Scholar
Sherman, S.M., & Guillery, R.W. (2005) The afferent axons to the thalamus: their structure and connections. In Exploring the Thalamus and Its Role in Cortical Functions. MIT Press, pp. 77137.Google Scholar
Sirota, M.G., Swadlow, H.A., & Beloozerova, I.N. (2005) Three channels of corticothalamic communication during locomotion. J. Neurosci., 25, 59155925.Google Scholar
Steriade, M., & Glenn, L.L. (1982) Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J. Neurophysiol., 48, 352371.Google Scholar
Steriade, M., Jones, E.G., & McCormick, D.A. (1997a) Diffuse regulatory system of the thalamus. In Thalamus. Elsevier, pp. 269339.Google Scholar
Steriade, M., Jones, E.G., & McCormick, D.A. (1997b) The relay function of the thalamus during brain activation. In Thalamus. Elsevier, pp. 393533.Google Scholar
Sumser, A., Mease, R.A., Sakmann, B., & Groh, A. (2017) Organization and somatotopy of corticothalamic projections from L5B in mouse barrel cortex. Proc. Natl. Acad. Sci. USA, 114, 88538858.Google Scholar
Suryanarayana, S.M., Pérez-Fernández, J., Robertson, B., & Grillner, S. (2020) The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat. Ecol. Evol., 4, 639651.Google Scholar
Suryanarayana, S.M., Robertson, B., Wallén, P., & Grillner, S. (2017) The lamprey Pallium provides a blueprint of the mammalian layered cortex. Curr. Biol., 27, 3264–3277.e5.Google Scholar
Szentágothai, J., Hámori, J., & Tömböl, T. (1966) Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res., 2, 283301.Google Scholar
Telgkamp, P., Padgett, D.E., Ledoux, V.A., Woolley, C.S., & Raman, I.M. (2004) Maintenance of high-frequency transmission at Purkinje to cerebellar nuclear synapses by spillover from boutons with multiple release sites. Neuron, 41, 113126.Google Scholar
Turner, J.P., & Salt, T.E. (1998) Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro. J. Physiol., 510, 829843.Google Scholar
Urbain, N., & Deschênes, M. (2007a) A new thalamic pathway of vibrissal information modulated by the motor cortex. J. Neurosci., 27, 1240712412.Google Scholar
Urbain, N., & Deschênes, M. (2007b) Motor cortex gates vibrissal responses in a thalamocortical projection pathway. Neuron, 56, 714725.Google Scholar
Usrey, W.M., Reppas, J.B., & Reid, R.C. (1999) Specificity and strength of retinogeniculate connections. J. Neurophysiol., 82, 35273540.Google Scholar
Van der Werf, Y.D., Witter, M.P., & Groenewegen, H.J. (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Brain Res. Rev., 39, 107140.Google Scholar
Varga, V., Losonczy, A., Zemelman, B. V, Borhegyi, Z., Nyiri, G., Domonkos, A., Hangya, B., Holderith, N., Magee, J.C., & Freund, T.F. (2009) Fast synaptic subcortical control of hippocampal circuits. Science, 326, 449453.Google Scholar
Veinante, P., & Deschênes, M. (2003) Single-cell study of motor cortex projections to the barrel field in rats. J. Comp. Neurol., 464, 98103.Google Scholar
Vicq d’Azyr, F. (1786) Traite d’Anatomie et de Physiologie. Didot.Google Scholar
Vidnyánszky, Z., Gorcs, T., Negyessy, L., Borostyankoi, Z., Knopfel, T., & Hamori, J. (1996) Immunocytochemical visualization of the mGluR1a metabotropic glutamate receptor at synapses of corticothalamic terminals originating from area 17 of the rat. Eur. J. Neurosci., 8, 10611071.Google Scholar
Vizi, E.S., & Lábos, E. (1991) Non-synaptic interactions at presynaptic level. Prog. Neurobiol., 37, 145163.Google Scholar
Wanaverbecq, N., Bodor, Á.L., Bokor, H., Slézia, A., Lüthi, A., & Acsády, L. (2008) Contrasting the functional properties of GABAergic axon terminals with single and multiple synapses in the thalamus. J. Neurosci., 28, 1184811861.Google Scholar
Xu, W., & Südhof, T.C. (2013) A neural circuit for memory specificity and generalization. Science, 339, 12901295.Google Scholar
Yamawaki, N., & Shepherd, G.M.G. (2015) Synaptic circuit organization of motor corticothalamic neurons. J. Neurosci., 35, 22932307.Google Scholar
Yu, C., Derdikman, D., Haidarliu, S., & Ahissar, E. (2006) Parallel thalamic pathways for whisking and touch signals in the rat. PLoS Biol., 4,e124.Google Scholar
Zhou, H., Schafer, R.J., & Desimone, R. (2016) Pulvinar-cortex interactions in vision and attention. Neuron, 89, 209220.Google Scholar

References

Adams, NC, Lozsádi, DA, Guillery, RW. (1997) Complexities in the thalamocortical and corticothalamic pathways. Eur J Neurosci. 9:204209.Google Scholar
Aguilar, J, Morales-Botello, ML, Foffani, G. (2008) Tactile responses of hindpaw, forepaw and whisker neurons in the thalamic ventrobasal complex of anesthetized rats. Eur J Neurosci. 27:378387.Google Scholar
Arbuthnott, GW, MacLeod, NK, Maxwell, DJ, Wright, AK. (1990) Distribution and synaptic contacts of the cortical terminals arising from neurons in the rat ventromedial thalamic nucleus. Neuroscience. 38:4760.Google Scholar
Asanuma, C, Andersen, RA, Cowan, WM. (1985) The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: divergent cortical projections from cell clusters in the medial pulvinar nucleus. J Comp Neurol. 241:357381. doi: 10.1002/cne.902410309.Google Scholar
Avendaño, C, Stepniewska, I, Rausell, E, Reinoso-Suárez, F. (1990) Segregation and heterogeneity of thalamic cell populations projecting to superficial layers of posterior parietal cortex: a retrograde tracer study in cat and monkey. Neuroscience 39:547559.Google Scholar
Baimbridge, KG, Celio, MR, Rogers, JH. (1992) Calcium-binding proteins in the nervous system. Trends Neurosci. 15:303308. doi: 10.1016/0166-2236(92)90081-i.Google Scholar
Barroso-Chinea, P, Castle, M, Aymerich, MS, Pérez-Manso, M, Erro, E, Tuñon, T, Lanciego, JL. (2007) Expression of the mRNAs encoding for the vesicular glutamate transporters 1 and 2 in the rat thalamus. J Comp Neurol. 501:703715. doi: 10.1002/cne.21265.Google Scholar
Bartlett, EL, Smith, PH. (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol. 81:19992016. doi: 10.1152/jn.1999.81.5.1999.Google Scholar
Bartlett, EL, Smith, PH. (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience. 113:957974. doi: 10.1016/s0306-4522(02)00240-3.Google Scholar
Beatty, JA, Sylwestrak, EL, Cox, CL. (2009) Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness. Neuroscience. 162:155173. doi: 10.1016/j.neuroscience.2009.04.043.Google Scholar
Bonnefond, M, Kastner, S, Jensen, O. (2017) Communication between brain areas based on nested oscillations. eNeuro. Mar 27;4(2):ENEURO.0153–16.2017. doi: 10.1523/ENEURO.0153-16.2017.Google Scholar
Boyd, JD, Matsubara, JA. (1996) Laminar and columnar patterns of geniculocortical projections in the cat: relationship to cytochrome oxidase. J Comp Neurol. 365:659682.Google Scholar
Carey, RG, Fitzpatrick, D, Diamond, IT. (1979a) Thalamic projections to layer I of striate cortex shown by retrograde transport of horseradish peroxidase. Science. 203:556559.Google Scholar
Carey, RG, Fitzpatrick, D, Diamond, IT. (1979b) Layer I of striate cortex of Tupaia glis and Galago senegalensis: projections from thalamus and claustrum revealed by retrograde transport of horseradish peroxidase. J Comp Neurol. 186:393437.Google Scholar
Carey, RG, Neal, TL. (1986) Reciprocal connections between the claustrum and visual thalamus in the tree shrew (Tupaia glis). Brain Res. 386:155168.Google Scholar
Casas-Torremocha, D, Porrero, C, Rodriguez-Moreno, J, García-Amado, M, Lübke, JHR, Núñez, Á, Clascá, F. (2019) Posterior thalamic nucleus axon terminals have different structure and functional impact in the motor and somatosensory vibrissal cortices. Brain Struct Funct. 224:16271645.Google Scholar
Castro-Alamancos, MA, Connors, BW. (1997) Thalamocortical synapses. Prog Neurobiol. 51(6):581606. doi: 10.1016/s0301-0082(97)00002-6.Google Scholar
Catalano, SM, Robertson, RT, Killackey, HP. (1996) Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J Comp Neurol. 367:3653. doi: 10.1002/(SICI)1096-9861(19960325)367:1<36::AID-CNE4>3.0.CO;2-K.Google Scholar
Clascá, F, Porrero, C, Galazo, M, Rubio-Garrido, P, Evangelio, M. (2016) Anatomy and development of multi-specific thalamocortical axons: implications for cortical dynamics and evolution. In Rockland, KS (ed.), Axons and Brain Architecture. Amsterdam: Elsevier, pp. 6992. doi: 10.1016/B978-0-12-801393-9.00004-9.Google Scholar
Clascá, F, Rubio-Garrido, P, Jabaudon, D. (2012). Unveiling the diversity of thalamocortical neuron subtypes. Eur J Neurosci. 35:15241532.Google Scholar
Clerici, WJ, McDonald, AJ, Thompson, R, Coleman, JR. (1990) Anatomy of the rat medial geniculate body: II. Dendritic morphology. J Comp Neurol. 297:3254.Google Scholar
Cruikshank, SJ, Ahmed, OJ, Stevens, TR, Patrick, SL, Gonzalez, AN, Elmaleh, M, Connors, BW. (2012) Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 32:1781317823. doi: 10.1523/JNEUROSCI.3231-12.2012.Google Scholar
Crunelli, V, Leresche, N, Parnavelas, JG. (1987) Membrane properties of morphologically identified X and Y cells in the lateral geniculate nucleus of the cat in vitro. J Physiol. 390:243256. doi: 10.1113/jphysiol.1987.sp016697.Google Scholar
Crunelli, V, Lorincz, ML, Connelly, WM, David, F, Hughes, SW, Lambert, RC, Leresche, N, Errington, AC. (2018) Dual function of thalamic low-vigilance state oscillations: Rhythm-regulation and plasticity. Nat Rev Neurosci. 19:107118. doi: 10.1038/nrn.2017.151Google Scholar
Desai, NV, Varela, C. (2021) Distinct burst properties contribute to the functional diversity of thalamic nuclei. J Comp Neurol. 529(17): 37263750.Google Scholar
Deschênes, M, Bourassa, J, Doan, VD, Parent, A. (1996) A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat. Eur J Neurosci. 8:329343.Google Scholar
Deschênes, M, Bourassa, J, Parent, A. (1995) Two different types of thalamic fibers innervate the rat striatum. Brain Res. 701:288292.Google Scholar
Deschênes, M, Bourassa, J, Parent, A. (1996) Striatal and cortical projections of single neurons from the central lateral thalamic nucleus in the rat. Neuroscience. 72:679687.Google Scholar
Deschênes, M, Veinante, P, Zhang, ZW. (1998) The organization of corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev. 28:286308. doi: 10.1016/s0165-0173(98)00017-4.Google Scholar
Donoghue, JP, Ebner, FF. (1981) The laminar distribution and ultrastructure of fibers projecting from three thalamic nuclei to the somatic sensory-motor cortex of the opossum. J Comp Neurol. 198:389420. doi: 10.1002/cne.901980303.Google Scholar
Doron, NN, Ledoux, JE. (2000) Cells in the posterior thalamus project to both amygdala and temporal cortex: a quantitative retrograde double-labeling study in the rat. J Comp Neurol. 425:257274.Google Scholar
Ellender, TJ, Harwood, J, Kosillo, P, Capogna, M, Bolam, JP. (2013) Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J Physiol. 591:257272. doi: 10.1113/jphysiol.2012.245233.Google Scholar
Erro, M, Lanciego, JL, Gimenez-Amaya, JM. (2002) Re-examination of the thalamostriatal projections in the rat with retrograde tracers. Neurosci Res. 42:4555. doi: 10.1016/s0168-0102(01)00302-9.Google Scholar
Familtsev, D, Quiggins, R, Masterson, SP, Dang, W, Slusarczyk, AS, Petry, HM, Bickford, ME. (2016) Ultrastructure of geniculocortical synaptic connections in the tree shrew striate cortex. J Comp Neurol. 524:12921306. doi: 10.1002/cne.23907.Google Scholar
Ferster, D, LeVay, S. (1978) The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol. 182:923944. doi: 10.1002/cne.901820510.Google Scholar
Fiebelkorn, IC, Pinsk, MA, Kastner, S. (2019) The mediodorsal pulvinar coordinates the macaque fronto-parietal network during rhythmic spatial attention. Nat Commun. 10:215. doi: 10.1038/s41467-018-08151-4.Google Scholar
Fitzpatrick, D, Itoh, K, Diamond, IT. (1983) The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J Neurosci. 3:673702.Google Scholar
Friedlander, MJ, Lin, CS, Stanford, LR, Sherman, SM. (1981) Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol. 46:80129. doi: 10.1152/jn.1981.46.1.80.Google Scholar
Fujiyama, F, Furuta, T, Kaneko, T. (2001) Immunocytochemical localization of candidates for vesicular glutamate transporters in the rat cerebral cortex. J Comp Neurol. 435:379387. doi: 10.1002/cne.1037.Google Scholar
Furuta, T, Tomioka, R, Taki, K, Nakamura, K, Tamamaki, N, Kaneko, T. (2001) In vivo transduction of central neurons using recombinant Sindbis virus: Golgi-like labeling of dendrites and axons with membrane-targeted fluorescent proteins. J Histochem Cytochem. 49:14971508. doi: 10.1177/002215540104901203.CrossRefGoogle ScholarPubMed
Galazo, MJ, Martinez-Cerdeño, V, Porrero, C, Clascá, F. (2008) Embryonic and postnatal development of the layer I-directed (“matrix”) thalamocortical system in the rat. Cereb Cortex. 18:344363.Google Scholar
Garel, S, López-Bendito, G. (2014) Inputs from the thalamocortical system on axon pathfinding mechanisms. Curr Opin Neurobiol. 27:143150. doi: 10.1016/j.conb.2014.03.013.Google Scholar
Garraghty, PE, Sur, M. (1990) Morphology of single intracellularly stained axons terminating in area 3b of macaque monkeys. J Comp Neurol. 294:583593. doi: 10.1002/cne.902940406. PMID: 2341626.Google Scholar
Gheorghita, F, Kraftsik, R, Dubois, R, Welker, E. (2006) Structural basis for map formation in the thalamocortical pathway of the barrelless mouse. J Neurosci. 26:1005710067. doi: 10.1523/JNEUROSCI.1263-06.2006.Google Scholar
Graybiel, AM, Berson, DM. (1980) Histochemical identification and afferent connections of subdivisions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience. 5:11751238. doi: 10.1016/0306-4522(80)90196-7.Google Scholar
Groh, A, Bokor, H, Mease, RA, Plattner, VM, Hangya, B, Stroh, A, Deschênes, M, Acsády, L. (2014) Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex. 24:31673179.Google Scholar
Guido, W, Lu, SM, Sherman, SM. (1992) Relative contributions of burst and tonic responses to the receptive field properties of lateral geniculate neurons in the cat. J Neurophysiol. 68, 21992211. doi:10.1152/jn.1992.68.6.2199.Google Scholar
Guido, W, Weyand, T. (1995) Burst responses in thalamic relay cells of the awake behaving cat. J Neurophysiol. 74:17821786.Google Scholar
Guillery, RW. (1966) A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J Comp Neurol. 128:2150. doi: 10.1002/cne.901280104.Google Scholar
Guillery, RW. (1995) Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat. 187:583592.Google Scholar
Guillery, RW, Sherman, SM. (2002) Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron. 33:163175. doi: 10.1016/s0896-6273(01)00582-7.Google Scholar
Gutierrez, C, Cox, CL, Rinzel, J, Sherman, SM. (2001) Dynamics of low-threshold spike activation in relay neurons of the cat lateral geniculate nucleus. J Neurosci. 21:10221032.Google Scholar
Harris, JA, Mihalas, S, Hirokawa, KE, Whitesell, JD, Choi, H, Bernard, A, Bohn, P, Caldejon, S, Casal, L, Cho, A, Feiner, A, Feng, D, Gaudreault, N, Gerfen, CR, Graddis, N, Groblewski, PA, Henry, AM, Ho, A, Howard, R, Knox, JE, Kuan, L, Kuang, X, Lecoq, J, Lesnar, P, Li, Y, Luviano, J, McConoughey, S, Mortrud, MT, Naeemi, M, Ng, L, Oh, SW, Ouellette, B, Shen, E, Sorensen, SA, Wakeman, W, Wang, Q, Wang, Y, Williford, A, Phillips, JW, Jones, AR, Koch, C, Zeng, H. (2019) Hierarchical organization of cortical and thalamic connectivity. Nature. 575:195202. doi: 10.1038/s41586-019-1716-z.Google Scholar
Hashikawa, T, Rausell, E, Molinari, M, Jones, EG. (1991) Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res. 544:335341. doi: 10.1016/0006-8993(91)90076-8.Google Scholar
Hendry, SH, Yoshioka, T. (1994) A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science. 264:575577.Google Scholar
Herkenham, M. (1978) The connections of the nucleus reuniens thalami: evidence for a direct thalamo-hippocampal pathway in the rat. J Comp Neurol. 177:589610.Google Scholar
Herkenham, M. (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol. 183:487517.Google Scholar
Herkenham, M. (1980) Laminar organization of thalamic projections to the rat neocortex. Science. 207:532535.Google Scholar
Herkenham, M. (1986) New perspectives on the organization and evolution of nonspecific thalamocortical projections. In Jones, EG (ed.), Cerebral Cortex, Vol 5. New York: Plenum Press, 1985, pp. 403445.Google Scholar
Houser, CR, Vaughn, JE, Barber, RP, Roberts, E. (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res. 200:341354.Google Scholar
Huang, CL, Winer, JA. (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J Comp Neurol. 427:302331. doi: 10.1002/1096-9861(20001113)427:2<302::aid-cne10>3.0.co;2-j.Google Scholar
Huguenard, JR. (1996) Low-threshold calcium currents in central nervous system neurons. Ann Rev Physiol. 58:329348. doi:10.1146/annurev.ph.58.030196.001553Google Scholar
Humphrey, AL, Sur, M, Uhlrich, DJ, Sherman, SM. (1985) Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. J Comp Neurol. 233:190212. doi: 10.1002/cne.902330204.CrossRefGoogle Scholar
Jager, P, Moore, G, Calpin, P, Durmishi, X, Salgarella, I, Menage, L, Kita, Y, Wang, Y, Kim, DW, Blackshaw, S, Schultz, SR, Brickley, S, Shimogori, T, Delogu, A. (2021) Dual midbrain and forebrain origins of thalamic inhibitory interneurons. eLife. Feb 1;10:e59272. doi: 10.7554/eLife.59272.Google Scholar
Jahnsen, H, Llinás, R. (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol. 349:205226. doi: 10.1113/jphysiol.1984.sp015153.Google Scholar
Jahnsen, H, Llinás, R. (1984b) Voltage-dependent burst-to-tonic switching of thalamic cell activity: An in vitro study. Arch Ital Biol. 122:7382.Google Scholar
Jaramillo, J, Mejias, JF, Wang, X-J. (2019) Engagement of pulvinocortical feedforward and feedback pathways in cognitive computations. Neuron. 101:321336. doi: 10.1016/j.neuron.2018.11.023.Google Scholar
Jhangiani-Jashanmal, IT, Yamamoto, R, Gungor, NZ, Paré, D. (2016) Electroresponsive properties of rat central medial thalamic neurons. J Neurophysiol. 115:15331541. doi: 10.1152/jn.00982.2015.Google Scholar
Jones, EG. (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience. 85:331345.Google Scholar
Jones, EG. (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci. 24, 595601.Google Scholar
Jones, EG. (2007a) Thalamic neurons, synaptic organization, and functional properties. In The Thalamus, 2nd ed., Vol. 1. Cambridge: Cambridge University Press, Ch. 4, pp. 171317.Google Scholar
Jones, EG. (2007b) The chemistry of the thalamus. In The Thalamus, 2nd ed., Vol. 1. Cambridge: Cambridge University Press, Ch. 5, pp. 318478.Google Scholar
Jones, EG, Burton, H. (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol. 168: 197247.Google Scholar
Jones, EG, Leavitt, RY. (1974) Retrograde axonal transport and the demonstration of non-specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J Comp Neurol. 154:349377. doi: 10.1002/cne.901540402.Google Scholar
Kageyama, GH, Wong-Riley, MT. (1984) The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and ON/OFF-center visual channels. J Neurosci. 4:24452459. doi: 10.1523/JNEUROSCI.04-10-02445.1984.Google Scholar
Kaufman, EF, Rosenquist, AC. (1985) Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res. 335, 257279.Google Scholar
Kerschensteiner, D, Guido, W. (2017) Organization of the dorsal lateral geniculate nucleus in the mouse. Vis Neurosci. Jan;34:E008. doi: 10.1017/S0952523817000062.Google Scholar
Killackey, H, Ebner, F. (1972) Two different types of thalamocortical projections to a single cortical area in mammals. Brain Behav Evol. 6:141–69.Google Scholar
Killackey, H, Ebner, F. (1973) Convergent projection of three separate thalamic nuclei on to a single cortical area. Science. 179, 283285.Google Scholar
Kim, EJ, Zhang, Z, Huang, L, Ito-Cole, T, Jacobs, MW, Juavinett, AL, Senturk, G, Hu, M, Ku, M, Ecker, JR, Callaway, EM. (2020) Extraction of distinct neuronal cell types from within a genetically continuous population. Neuron. 107:274282. doi: 10.1016/j.neuron.2020.04.018.Google Scholar
Kirouac, GJ. (2015) Placing the paraventricular nucleus of the thalamus within the brain circuits that control behavior. Neurosci Biobehav Rev. 56:315329. doi: 10.1016/j.neubiorev.2015.08.005.Google Scholar
Kuramoto, E, Furuta, T, Nakamura, KC, Unzai, T, Hioki, H, Kaneko, T. (2009) Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex. 19:20652077.Google Scholar
Kuramoto, E, Iwai, H, Yamanaka, A, Ohno, S, Seki, H, Tanaka, YR, Furuta, T, Hioki, H, Goto, T. (2017) Dorsal and ventral parts of thalamic nucleus submedius project to different areas of rat orbitofrontal cortex: A single neuron-tracing study using virus vectors. J Comp Neurol. 525:38213839. doi: 10.1002/cne.24306. Epub 2017.Google Scholar
Kuramoto, E, Ohno, S, Furuta, T, Unzai, T, Tanaka, YR, Hioki, H, Kaneko, T. (2015) Ventral medial nucleus neurons send thalamocortical afferents more widely and more preferentially to layer 1 than neurons of the ventral anterior–ventral lateral nuclear complex in the rat. Cereb Cortex. 25:221235.Google Scholar
Kuramoto, E, Pan, S, Furuta, T, Tanaka, YR, Iwai, H, Yamanaka, A, Ohno, S, Kaneko, T, Goto, T, Hioki, H. (2017) Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: a single neuron-tracing study using virus vectors. J Comp Neurol. 525:166185. doi: 10.1002/cne.24054.Google Scholar
Lacey, CJ, Bolam, JP, Magill, PJ. (2007) Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci. 27:43744384. doi: 10.1523/JNEUROSCI.5519-06.2007.Google Scholar
Lanciego, JL, Gonzalo, N, Castle, M, Sanchez-Escobar, C, Aymerich, MS, Obeso, JA. (2004) Thalamic innervation of striatal and subthalamic neurons projecting to the rat entopeduncular nucleus. Eur J Neurosci. 19:12671277. doi: 10.1111/j.1460-9568.2004.03244.x.Google Scholar
Land, PW, Simons, DJ. (1985) Metabolic and structural correlates of the vibrissae representation in the thalamus of the adult rat. Neurosci Lett. 60:319324. doi: 10.1016/0304-3940(85)90597-x.Google Scholar
Landisman, CE, Connors, BW. (2007) VPM and PoM nuclei of the rat somatosensory thalamus: Intrinsic neuronal properties and corticothalamic feedback. Cereb Cortex. 17:28532865. https://doi.org/10.1093/cercor/bhm025Google Scholar
Leresche, N, Lightowler, S, Soltesz, I, Jassik-Gerschenfeld, D, Crunelli, V. (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol. 441:155174.Google Scholar
LeVay, S, Gilbert, CD. (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res. 113:119.Google Scholar
Leventhal, AG. (1979) Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex. Exp Brain Res. 37:349372. doi: 10.1007/BF00237719.Google Scholar
Li, J, Bickford, ME, Guido, W. (2003) Distinct firing properties of higher order thalamic relay neurons. J Neurophysiol. 90:291299. doi: 10.1152/jn.01163.2002Google Scholar
Li, Y, Lopez-Huerta, VG, Adiconis, X, Levandowski, K, Choi, S, Simmons, SK, Arias-Garcia, MA, Guo, B, Yao, AY, Blosser, TR, Wimmer, RD, Aida, T, Atamian, A, Naik, T, Sun, X, Bi, D, Malhotra, D, Hession, CC, Shema, R, Gomes, M, Li, T, Hwang, E, Krol, A, Kowalczyk, M, Peça, J, Pan, G, Halassa, MM, Levin, JZ, Fu, Z, Feng, G. (2020) Distinct subnetworks of the thalamic reticular nucleus. Nature. 583:819824. doi: 10.1038/s41586-020-2504-5.Google Scholar
Llinás, R, Jahnsen, H. (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature. 297:406408. doi: 10.1038/297406a0.Google Scholar
Llinás, RR Steriade, M. (2006) Bursting of thalamic neurons and states of vigilance. J Neurophysiol. 95:32973308. doi:10.1152/jn.00166.2006.Google Scholar
López-Bendito, G, Cautinat, A, Sánchez, JA, Bielle, F, Flames, N, Garratt, AN, Talmage, DA, Role, LW, Charnay, P, Marín, O, Garel, S. (2006) Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell. 125:127142. doi: 10.1016/j.cell.2006.01.042.Google Scholar
López-Bendito, G, Molnar, Z. (2003) Thalamocortical development: how are we going to get there? Nat Rev Neurosci. 4:276289. doi:10.1038/nrn1075.Google Scholar
Lorente de No, R. (1938) Cerebral cortex: architecture, intracortical connections, motor projections. In Fulton, J (ed.), Physiology of the nervous system. London: Oxford University Press. pp. 291340.Google Scholar
Lund, JS. (1988) Anatomical organization of macaque monkey striate visual cortex. Annu Rev Neurosci. 11:253288. doi: 10.1146/annurev.ne.11.030188.001345.Google Scholar
Macchi, G, Bentivoglio, M, Minciacchi, D, Molinari, M. (1996) Trends in the anatomical organization and functional significance of the mammalian thalamus. Ital J Neurol Sci. 17:105129. doi: 10.1007/BF02000842.Google Scholar
Macchi, G, Bentivoglio, M, Molinari, M, Minciacchi, D. (1984) The thalamo-caudate versus thalamo-cortical projections as studied in the cat with fluorescent retrograde double labeling. Exp Brain Res. 54:225239. doi: 10.1007/BF00236222.Google Scholar
Mandelbaum, G, Taranda, J, Haynes, TM, Hochbaum, DR, Huang, KW, Hyun, M, Umadevi Venkataraju, K, Straub, C, Wang, W, Robertson, K, Osten, P, Sabatini, BL. (2019) Distinct cortical-thalamic-striatal circuits through the parafascicular nucleus. Neuron. 102:636652. doi: 10.1016/j.neuron.2019.02.035.Google Scholar
Martini, FJ, Guillamón-Vivancos, T, Moreno-Juan, V, Valdeolmillos, M, López-Bendito, G. (2021) Spontaneous activity in developing thalamic and cortical sensory networks. Neuron. 109:25192534. doi: 10.1016/j.neuron.2021.06.026.Google Scholar
Minciacchi, D, Bentivoglio, M, Molinari, M, Kultas-Ilinsky, K, Ilinsky, IA, Macchi, G. (1986) Multiple cortical targets of one thalamic nucleus: the projections of the ventral medial nucleus in the cat studied with retrograde tracers. J Comp Neurol. 252:106129.Google Scholar
Mitani, A, Itoh, K, Mizuno, N. (1987) Distribution and size of thalamic neurons projecting to layer I of the auditory cortical fields of the cat compared to those projecting to layer IV. J Comp Neurol. 257:105121.Google Scholar
Molnár, Z, Garel, S, López-Bendito, G, Maness, P, Price, DJ. (2012) Mechanisms controlling the guidance of thalamocortical axons through the embryonic forebrain. Eur J Neurosci. 35:15731585. doi: 10.1111/j.1460-9568.2012.08119.xGoogle Scholar
Monckton, JE, McCormick, DA. (2002) Neuromodulatory role of serotonin in the ferret thalamus. J Neurophysiol. 87:21242136. doi: 10.1152/jn.00650.2001.Google Scholar
Morest, DK. (1964) The neuronal architecture of the medial geniculate body of the cat. J Anat. 98:611630. PMID: 14229992.Google Scholar
Murray, KD, Choudary, PV, Jones, EG. (2007) Nucleus- and cell-specific gene expression in monkey thalamus. Proc Natl Acad Sci USA. 104:1989–1994.Google Scholar
Nagalski, A, Puelles, L, Dabrowski, M, Wegierski, T, Kuznicki, J, Wisniewska, MB. (2016) Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct Funct. 221:24932510. doi: 10.1007/s00429-015-1052-5.Google Scholar
Nakagawa, Y. (2019) Development of the thalamus: From early patterning to regulation of cortical functions. Wiley Interdiscip Rev Dev Biol. Sep;8(5):e345. doi: 10.1002/wdev.345.Google Scholar
Nakamura, H, Hioki, H, Furuta, T, Kaneko, T. (2015) Different cortical projections from three subdivisions of the rat lateral posterior thalamic nucleus: a single-neuron tracing study with viral vectors. Eur J Neurosci. 41:12941310.Google Scholar
Nakamura, KC, Sharott, A, Magill, PJ. (2014) Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus. Cereb Cortex. 24:8197. doi: 10.1093/cercor/bhs287.Google Scholar
Namura, S, Takada, M, Kikuchi, H, Mizuno, N. (1997) Collateral projections of single neurons in the posterior thalamic region to both the temporal cortex and the amygdala: a fluorescent retrograde double-labeling study in the rat. J Comp Neurol. 384:5970.Google Scholar
Noseda, R, Jakubowski, M, Kainz, V, Borsook, D, Burstein, R. (2011) Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J. Neurosci. 31:1420414217.Google Scholar
Noseda, R, Kainz, V, Jakubowski, M, Gooley, JJ, Saper, CB, Digre, K, Burstein, R. (2010) A neural mechanism for exacerbation of headache by light. Nat. Neurosci. 13:239245. doi: 10.1038/nn.2475. Epub 2010 Jan 10.Google Scholar
Nuñez, A, Amzica, F, Steriade, M. (1992) Intrinsic and synaptically generated delta (1–4 Hz) rhythms in dorsal lateral geniculate neurons and their modulation by light-induced fast (30–70 Hz) events. Neuroscience. 51:269284.Google Scholar
Oberlaender, M, Ramirez, A, Bruno, RM. (2012) Sensory experience restructures thalamocortical axons during adulthood. Neuron. 74, 648655.Google Scholar
Oh, SW, Harris, JA, Ng, L, Winslow, B, Cain, N, Mihalas, S, Wang, Q, Lau, C, Kuan, L, Henry, AM, Mortrud, MT, Ouellette, B, Nguyen, TN, Sorensen, SA, Slaughterbeck, CR, Wakeman, W, Li, Y, Feng, D, Ho, A, Nicholas, E, Hirokawa, KE, Bohn, P, Joines, KM, Peng, H, Hawrylycz, MJ, Phillips, JW, Hohmann, JG, Wohnoutka, P, Gerfen, CR, Koch, C, Bernard, A, Dang, C, Jones, AR, Zeng, H. (2014) A mesoscale connectome of the mouse brain. Nature. 508:207214. doi: 10.1038/nature13186.Google Scholar
Ohno, S, Kuramoto, E, Furuta, T, Hioki, H, Tanaka, YR, Fujiyama, F, Sonomura, T, Uemura, M, Sugiyama, K, Kaneko, T. (2012) A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. Cereb Cortex. 22: 28402857.Google Scholar
Parent, M, Parent, A. (2005) Single-axon tracing and three-dimensional reconstruction of centre median-parafascicular thalamic neurons in primates. J Comp Neurol. 481:127144. doi: 10.1002/cne.20348.Google Scholar
Pedroarena, C. Llinás, R. (1997) Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci USA. 94:724728.Google Scholar
Penny, GR, Itoh, K, Diamond, IT. (1982) Cells of different sizes in the ventral nuclei project to different layers of the somatic cortex in the cat. Brain Res. 242:5565. doi: 10.1016/0006-8993(82)90495-4.Google Scholar
Perez-Reyes, E. (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev. 83:117161. doi: 10.1152/physrev.00018.2002.Google Scholar
Phillips, JW, Schulmann, A, Hara, E, Winnubst, J, Liu, C, Valakh, V, Wang, L, Shields, BC, Korff, W, Chandrashekar, J, Lemire, AL, Mensh, B, Dudman, JT, Nelson, SB, Hantman, AW. (2019) A repeated molecular architecture across thalamic pathways. Nat Neurosci. 22:19251935. doi: 10.1038/s41593-019-0483-3.Google Scholar
Pinault, D. (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Meth. 65:113136.Google Scholar
Puelles, L, Rubenstein, JL. (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26:469476.Google Scholar
Ramón y Cajal, S (1904) Textura del Sistema Nervioso del Hombre y de los Vertebrados. II Parte., Vol. 2. Madrid: Imprenta Nicolás Moya.Google Scholar
Rausell, E, Avendaño, C. (1985) Thalamocortical neurons projecting to superficial and to deep layers in parietal, frontal and prefrontal regions in the cat. Brain Res. 347:159165.Google Scholar
Rausell, E, Bae, CS, Viñuela, A, Huntley, GW, Jones, EG. (1992) Calbindin and parvalbumin cells in monkey VPL thalamic nucleus: distribution, laminar cortical projections, and relations to spinothalamic terminations. J Neurosci. 12:40884111.Google Scholar
Rausell, E, Jones, EG. (1991) Histochemical and immunocytochemical compartments of the thalamic VPM nucleus in monkeys and their relationship to the representational map. J Neurosci. 11:210225. doi: 10.1523/JNEUROSCI.11-01-00210.1991.Google Scholar
Real, MA, Dávila, JC, Guirado, S. (2006) Immunohistochemical localization of the vesicular glutamate transporter VGLUT2 in the developing and adult mouse claustrum. J Chem Neuroanat. 31:169177.Google Scholar
Reinagel, P, Godwin, D, Sherman, SM, Koch, C. (1999) Encoding of visual information by LGN bursts. J Neurophysiol. 81:25582569. doi: 10.1152/jn.1999.81.5.2558Google Scholar
Ren, S, Wang, Y, Yue, F, Cheng, X, Dang, R, Qiao, Q, Sun, X, Li, X, Jiang, Q, Yao, J, Qin, H, Wang, G, Liao, X, Gao, D, Xia, J, Zhang, J, Hu, B, Yan, J, Wang, Y, Xu, M, Han, Y, Tang, X, Chen, X, He, C, Hu, Z. (2018) The paraventricular thalamus is a critical thalamic area for wakefulness. Science. 362:429434. doi: 10.1126/science.aat2512.Google Scholar
Rodriguez-Moreno, J, Porrero, C, Rollenhagen, A, Rubio-Teves, M, Casas-Torremocha, D, Alonso-Nanclares, L, Yakoubi, R, Santuy, A, Merchan-Pérez, A, DeFelipe, J, Lübke, JHR, Clascá, F. (2020) Area-specific synapse structure in branched posterior nucleus axons reveals a new level of complexity in thalamocortical networks. J Neurosci. 40:26632679. doi: 10.1523/JNEUROSCI.2886-19.2020.Google Scholar
Rodriguez-Moreno, J, Rollenhagen, A, Arlandis, J, Santuy, A, Merchan-Pérez, A, DeFelipe, J, Lübke, JHR, Clascá, F. (2018) Quantitative 3D ultrastructure of thalamocortical synapses from the “lemniscal” ventral posteromedial nucleus in mouse barrel cortex. Cereb Cortex. 28:31593175. doi: 10.1093/cercor/bhx187.Google Scholar
Rubio-Garrido, P, Pérez-de-Manzo, F, Porrero, C, Galazo, MJ, Clascá, F. (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex. 19:23802395. doi: 10.1093/cercor/bhn259.Google Scholar
Sampathkumar, V, Miller-Hansen, A, Sherman, SM, Kasthuri, N. (2021) Integration of signals from different cortical areas in higher order thalamic neurons. Proc Natl Acad Sci USA. 118(30):e2104137118. doi: 10.1073/pnas.2104137118.Google Scholar
Scheibel, ME, Scheibel, AB. (1966) The organization of the ventral anterior nucleus of the thalamus. A Golgi study. Brain Res. 1:250268. doi: 10.1016/0006-8993(66)90091-6.Google Scholar
Sherman, SM. (2001a) A wake-up call from the thalamus. Nat Neurosci. 4:344346. doi: 10.1038/85973.Google Scholar
Sherman, SM. (2001b) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24:122126. doi: 10.1016/s0166-2236(00)01714-8.Google Scholar
Sheroziya, M, Timofeev, I. (2014) Global intracellular slow-wave dynamics of the thalamocortical system. J Neurosci. 34:88758893. doi: 10.1523/JNEUROSCI.4460-13.2014.Google Scholar
Shi, W, Xianyu, A, Han, Z, Tang, X, Li, Z, Zhong, H, Mao, T, Huang, K, Shi, SH. (2017) Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nat Neurosci. 20:516528. doi: 10.1038/nn.4519.Google Scholar
Shibata, H. (1993a) Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat. J Comp Neurol. 337:431445. doi: 10.1002/cne.903370307.Google Scholar
Shibata, H. (1993b) Efferent projections from the anterior thalamic nuclei to the cingulate cortex in the rat. J Comp Neurol. 330:533542. doi: 10.1002/cne.903300409.Google Scholar
Slézia, A, Hangya, B, Ulbert, I, Acsády, L. (2011) Phase advancement and nucleus-specific timing of thalamocortical activity during slow cortical oscillation. J Neurosci. 31:607617. doi: 10.1523/JNEUROSCI.3375-10.2011.Google Scholar
Smith, PH, Bartlett, EL, Kowalkowski, A. (2006) Unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. J Comp Neurol. 496:314334. doi: 10.1002/cne.20913.Google Scholar
Smith, Y, Galvan, A, Ellender, TJ, Doig, N, Villalba, RM, Huerta-Ocampo, I, Wichmann, T, Bolam, JP. (2014) The thalamostriatal system in normal and diseased states. Front Syst Neurosci. Jan 30;8:5. doi: 10.3389/fnsys.2014.00005.Google Scholar
Stanford, LR, Friedlander, MJ, Sherman, SM. (1983) Morphological and physiological properties of geniculate W-cells of the cat: a comparison with X- and Y-cells. J Neurophysiol. 50:582608. doi: 10.1152/jn.1983.50.3.582.Google Scholar
Swadlow, HA, Gusev, AG. (2001) The impact of “bursting” thalamic impulses at a neocortical synapse. Nat Neurosci. 4:402408. doi: 10.1038/86054.Google Scholar
Turner, JP, Anderson, CM, Williams, SR, Crunelli, V. (1997) Morphology and membrane properties of neurones in the cat ventrobasal thalamus in vitro. J Physiol. 505:707726.Google Scholar
Turner, JP, Leresche, N, Guyon, A, Soltesz, I, Crunelli, V. (1994) Sensory input and burst firing output of rat and cat thalamocortical cells: the role of NMDA and non-NMDA receptors. J Physiol. 480:281295.Google Scholar
Unzai, T, Kuramoto, E, Kaneko, T, Fujiyama, F. (2017) Quantitative analyses of the projection of individual neurons from the midline thalamic nuclei to the striosome and matrix compartments of the rat striatum. Cereb Cortex. 27:11641181. doi: 10.1093/cercor/bhv295.Google Scholar
Van der Werf, YD, Witter, MP, Groenewegen, HJ. (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev. 39:107140. doi: 10.1016/s0165-0173(02)00181-9.Google Scholar
Van Groen, T, Kadish, I, Wyss, JM. (1999) Efferent connections of the anteromedial nucleus of the thalamus of the rat. Brain Res Brain Res Rev. 30:126. doi: 10.1016/s0165-0173(99)00006-5.Google Scholar
Van Groen, T, Wyss, JM. (1995) Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat. J Comp Neurol. 358:584604. doi: 10.1002/cne.903580411.Google Scholar
Vanderhaeghen, P, Polleux, F. (2004) Developmental mechanisms patterning thalamocortical projections: intrinsic, extrinsic and in between. Trends Neurosci. 27:384391.Google Scholar
Varela, C, Sherman, SM. (2009) Differences in response to serotonergic activation between first and higher order thalamic nuclei. Cereb Cortex. 19:17761786. doi: 10.1093/cercor/bhn208.Google Scholar
Vertes, RP, Hoover, WB. (2008) Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol. 508:212237. doi: 10.1002/cne.21679.Google Scholar
Vertes, RP, Hoover, WB, Do Valle, AC, Sherman, A, Rodriguez, JJ. (2006) Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol. 499:768–96. doi: 10.1002/cne.21135.Google Scholar
Vertes, RP, Hoover, WB, Rodriguez, JJ. (2012) Projections of the central medial nucleus of the thalamus in the rat: node in cortical, striatal and limbic forebrain circuitry. Neuroscience. 219:120136. doi: 10.1016/j.neuroscience.2012.04.067.Google Scholar
Vue, TY, Aaker, J, Taniguchi, A, Kazemzadeh, C, Skidmore, JM, Martin, DM, Martin, JF, Treier, M, Nakagawa, Y. (2007) Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol. 505:7391. doi: 10.1002/cne.21467.Google Scholar
Wang, Q, Ding, SL, Li, Y, Royall, J, Feng, D, Lesnar, P, Graddis, N, Naeemi, M, Facer, B, Ho, A, Dolbeare, T, Blanchard, B, Dee, N, Wakeman, W, Hirokawa, KE, Szafer, A, Sunkin, SM, Oh, SW, Bernard, A, Phillips, JW, Hawrylycz, M, Koch, C, Zeng, H, Harris, JA, Ng, L. (2020) The Allen mouse brain common coordinate framework: A 3D reference atlas. Cell. 181:936–953.e20. doi: 10.1016/j.cell.2020.04.007.Google Scholar
Wang, X, Wei, Y, Vaingankar, V, Wang, Q, Koepsell, K, Sommer, FT, Hirsch, JA. (2007) Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron. 55:465478. doi: 10.1016/j.neuron.2007.06.039.Google Scholar
Wei, H, Bonjean, M, Petry, HM, Sejnowski, TJ, Bickford, ME. (2011) Thalamic burst firing propensity: A comparison of the dorsal lateral geniculate and pulvinar nuclei in the tree shrew. J Neurosci. 31:1728717299. doi: 10.1523/JNEUROSCI.6431-10.2011Google Scholar
Whitmire, CJ., Waiblinger, C, Schwarz, C, Stanley, GB. (2016) Information coding through adaptive gating of synchronized thalamic bursting. Cell Rep. 14:795807. doi: 10.1016/j.celrep.2015.12.068.Google Scholar
Winnubst, J, Bas, E, Ferreira, TA, Wu, Z, Economo, MN, Edson, P, Arthur, BJ, Bruns, C, Rokicki, K, Schauder, D, Olbris, DJ, Murphy, SD, Ackerman, DG, Arshadi, C, Baldwin, P, Blake, R, Elsayed, A, Hasan, M, Ramirez, D, Dos Santos, B, Weldon, M, Zafar, A, Dudman, JT, Gerfen, CR, Hantman, AW, Korff, W, Sternson, SM, Spruston, N, Svoboda, K, Chandrashekar, J. (2019) Reconstruction of 1,000 projection neurons reveals new cell types and organization of long-range connectivity in the mouse brain. Cell. 179:268281. doi: 10.1016/j.cell.2019.07.042.Google Scholar
Winnubst, J, Spruston, N, Harris, JA. (2020) Linking axon morphology to gene expression: a strategy for neuronal cell-type classification. Curr Opin Neurobiol. 65:7076. doi: 10.1016/j.conb.2020.10.006.Google Scholar
Wong, SZH, Scott, EP, Mu, W, Guo, X, Borgenheimer, E, Freeman, M, Ming, G, Wu, QF, Song, H, Nakagawa, Y. (2018) In vivo clonal analysis reveals spatiotemporal regulation of thalamic nucleogenesis. PLoS Biol. 16(4):e2005211. doi: 10.1371/journal.pbio.2005211.Google Scholar
Wouterlood, FG, Saldana, E, Witter, MP. (1990) Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer phaseolus vulgaris-leucoagglutinin. J Comp Neurol. 296:179203. doi: 10.1002/cne.Google Scholar
Yasui, Y, Itoh, K, Sugimoto, T, Kaneko, T, Mizuno, N. (1987) Thalamocortical and thalamo-amygdaloid projections from the parvicellular division of the posteromedial ventral nucleus in the cat. J Comp Neurol. 257:253268. doi: 10.1002/cne.902570210.Google Scholar
Yen, CT, Conley, M, Jones, EG. (1985) Morphological and functional types of neurons in cat ventral posterior thalamic nucleus. J Neurosci. 5:13161338.Google Scholar

References

Alitto, H., Rathbun, D. L., Vandeleest, J. J., Alexander, P. C., & Usrey, W. M. (2019). The augmentation of retinogeniculate communication during thalamic burst mode. Journal of Neuroscience, 39, 5710.Google Scholar
Andolina, I. M., Jones, H. E., & Sillito, A. M. (2013). Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. Journal of Neurophysiology, 109, 889899.Google Scholar
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16, 437443.Google Scholar
Basso, M. A., & May, P. J. (2017). Circuits for action and cognition: A view from the superior colliculus. Annual Review of Vision Science, 3, 197226.Google Scholar
Berman, R. A., & Wurtz, R. H. (2010). Functional identification of a pulvinar path from superior colliculus to cortical area MT. Journal of Neuroscience, 30, 63426354.Google Scholar
Bezdudnaya, T., Cano, M., Bereshpolova, Y., Stoelzel, C. R., Alonso, J. M., & Swadlow, H. A. (2006). Thalamic burst mode and inattention in the awake LGNd. Neuron, 49, 421432.Google Scholar
Bickford, M. E., Zhou, N., Krahe, T. E., Govindaiah, G., & Guido, W. (2015). Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. Journal of Neuroscience, 35, 1052310534.Google Scholar
Bokor, H., Frere, S. G. A., Eyre, M. D., Slezia, A., Ulbert, I., Luthi, A., et al. (2005). Selective GABAergic control of higher-order thalamic relays. Neuron, 45, 929940.Google Scholar
Bourassa, J., & Deschênes, M. (1995). Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience, 66, 253263.Google Scholar
Bourassa, J., Pinault, D., & Deschênes, M. (1995). Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: A single-fibre study using biocytin as an anterograde tracer. European Journal of Neuroscience, 7, 1930.Google Scholar
Branco, T., & Staras, K. (2009). The probability of neurotransmitter release: variability and feedback control at single synapses. Nature Reviews Neuroscience, 10, 373383.Google Scholar
Briggs, F., Mangun, G. R., & Usrey, W. M. (2013). Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits. Nature, 499, 476480.Google Scholar
Brown, D. A., Abogadie, F. C., Allen, T. G., Buckley, N. J., Caulfield, M. P., Delmas, P., Haley, J. E., Lamas, J. A., & Selyanko, A. A. (1997). Muscarinic mechanisms in nerve cells. Life Sciences, 60, 11371144.Google Scholar
Cajal, S. R. y. (1911). Histologie du Système Nerveaux de l’Homme et des Vertébrés. Paris: Maloine.Google Scholar
Chalk, M., Herrero, J. L., Gieselmann, M. A., Delicato, L. S., Gotthardt, S., & Thiele, A. (2010). Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1. Neuron, 66, 114125.Google Scholar
Cohen, M. R., & Maunsell, J. H. (2009). Attention improves performance primarily by reducing interneuronal correlations. Nature Neuroscience, 12, 15941600.Google Scholar
Covic, E. N., & Sherman, S. M. (2011). Synaptic properties of connections between the primary and secondary auditory cortices in mice. Cerebral Cortex, 21, 24252441.Google Scholar
Cox, C. L., Denk, W., Tank, D. W., & Svoboda, K. (2000). Action potentials reliably invade axonal arbors of rat neocortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 97249728.Google Scholar
Crapse, T. B., & Sommer, M. A. (2008a). Corollary discharge across the animal kingdom. Nature Reviews Neuroscience, 9, 587600.Google Scholar
Crapse, T. B., & Sommer, M. A. (2008b). Corollary discharge circuits in the primate brain. Current Opinion in Neurobiology, 18, 552557.Google Scholar
Crunelli, V., & Leresche, N. (1991). A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends in Neurosciences, 14, 1621.Google Scholar
Deleuze, C., David, F., Behuret, S., Sadoc, G., Shin, H. S., Uebele, V. N., et al. (2012). T-type calcium channels consolidate tonic action potential output of thalamic neurons to neocortex. Journal of Neuroscience, 32, 1222812236.Google Scholar
DePasquale, R., & Sherman, S. M. (2011). Synaptic properties of corticocortical connections between the primary and secondary visual cortical areas in the mouse. Journal of Neuroscience, 31, 1649416506.Google Scholar
DePasquale, R., & Sherman, S. M. (2012). Modulatory effects of metabotropic glutamate receptors on local cortical circuits. Journal of Neuroscience, 32, 73647372.Google Scholar
DePasquale, R., & Sherman, S. M. (2013). A modulatory effect of the feedback from higher visual areas to V1 in the mouse. Journal of Neurophysiology, 109, 26182631.Google Scholar
Deschênes, M., Bourassa, J., & Pinault, D. (1994). Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Research, 664, 215219.Google Scholar
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Reviews in Neuroscience, 18, 193222.Google Scholar
Dittman, J. S., Kreitzer, A. C., & Regehr, W. G. (2000). Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. Journal of Neuroscience, 20, 13741385.Google Scholar
Dobrunz, L. E., & Stevens, C. F. (1997). Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron, 18, 9951008.Google Scholar
Economo, M. N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563, 7984.Google Scholar
Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474480.Google Scholar
Gaither, N. S., & Stein, B. E. (1979). Reptiles and mammals use similar sensory organizations in the midbrain. Science, 205, 595597.Google Scholar
Gilbert, C. D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. Journal of Physiology (London), 268, 391421.Google Scholar
Godwin, D. W., Vaughan, J. W., & Sherman, S. M. (1996). Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. Journal of Neurophysiology, 76, 18001816.Google Scholar
Groh, A., Bokor, H., Mease, R. A., Plattner, V. M., Hangya, B., Stroh, A., et al. (2013). Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cerebral Cortex, 24, 31673179.Google Scholar
Groh, A., Bokor, H., Mease, R. A., Plattner, V. M., Hangya, B., Stroh, A., et al. (2014). Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cerebral Cortex, 24, 31673179.CrossRefGoogle ScholarPubMed
Guillery, R. W. (1995). Anatomical evidence concerning the role of the thalamus in corticocortical communication: A brief review. Journal of Anatomy, 187, 583592.Google Scholar
Guillery, R. W. (2003). Branching thalamic afferents link action and perception. Journal of Neurophysiology, 90, 539548.Google Scholar
Guillery, R. W. (2005). Anatomical pathways that link action to perception. Progress in Brain Research, 149, 235256.Google Scholar
Gulcebi, M. I., Ketenci, S., Linke, R., Hacioglu, H., Yanali, H., Veliskova, J., et al. (2011). Topographical connections of the substantia nigra pars reticulata to higher-order thalamic nuclei in the rat. Brain Research Bulletin, 87, 312318.Google Scholar
Herman, J. P., Katz, L. N., & Krauzlis, R. J. (2018). Midbrain activity can explain perceptual decisions during an attention task. Nature Neuroscience, 21, 16511655.Google Scholar
Hille, B. (1992). Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat’s lateral geniculate body. Journal of Physiology (London), 155, 385398.Google Scholar
Huguenard, J. R. (1996). Low-threshold calcium currents in central nervous system neurons. Annual Review of Physiology, 58, 329348.Google Scholar
Huguenard, J. R., & McCormick, D. A. (1994). Electrophysiology of the neuron. New York: Oxford: Oxford University Press.Google Scholar
Huguenard, J. R., & Prince, D. A. (1994). Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. Journal of Neurophysiology, 71, 25762581.CrossRefGoogle ScholarPubMed
Isa, T., Kinoshita, M., & Nishimura, Y. (2013). Role of direct vs. indirect pathways from the motor cortex to spinal motoneurons in the control of hand dexterity. Frontiers in Neurology, 4, 191.Google Scholar
Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. Oxfrod: Oxford University Press.Google Scholar
Jahnsen, H., & Llinás, R. (1984a). Electrophysiological properties of guinea-pig thalamic neurones: An in vitro study. Journal of Physiology (London), 349, 205226.Google Scholar
Jahnsen, H., & Llinás, R. (1984b). Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. Journal of Physiology (London), 349, 227247.Google Scholar
Johnston, D., Magee, J. C., Colbert, C. M., & Christie, B. R. (1996). Active properties of neuronal dendrites. Annual Review of Neuroscience, 19, 165186.CrossRefGoogle ScholarPubMed
Kelly, L. R., Li, J., Carden, W. B., & Bickford, M. E. (2003). Ultrastructure and synaptic targets of tectothalamic terminals in the cat lateral posterior nucleus. Journal of Comparative Neurology, 464, 472486.Google Scholar
Kim, H. R., Hong, S. Z., & Fiorillo, C. D. (2015). T-type calcium channels cause bursts of spikes in motor but not sensory thalamic neurons during mimicry of natural patterns of synaptic input. Frontiers in Cellular Neuroscience, 9, 428.Google Scholar
Kita, T., & Kita, H. (2012). The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat. Journal of Neuroscience, 32, 59905999.Google Scholar
Krauzlis, R. J., Lovejoy, L. P., & Zenon, A. (2013). Superior colliculus and visual spatial attention. Annual Reviews in Neuroscience, 36, 165182.Google Scholar
Kuramoto, E., Fujiyama, F., Nakamura, K. C., Tanaka, Y., Hioki, H., & Kaneko, T. (2011). Complementary distribution of glutamatergic cerebellar and GABAergic basal ganglia afferents to the rat motor thalamic nuclei. European Journal of Neuroscience, 33, 95109.Google Scholar
Lam, Y. W., & Sherman, S. M. (2010). Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cerebral Cortex, 20, 1324.Google Scholar
Lam, Y. W., & Sherman, S. M. (2019). Convergent synaptic inputs to layer 1 cells of mouse cortex. European Journal of Neuroscience, 49, 1399.Google Scholar
Larkum, M. E., Senn, W., & Luscher, H. R. (2004). Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cerebral Cortex, 14, 10591070.Google Scholar
Larkum, M. E., Waters, J., Sakmann, B., & Helmchen, F. (2007). Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. Journal of Neuroscience, 27, 89999008.Google Scholar
Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398, 338341.Google Scholar
Lavallée, P., Urbain, N., Dufresne, C., Bokor, H., Acsády, L., & Deschênes, M. (2005). Feedforward inhibitory control of sensory information in higher-order thalamic nuclei. Journal of Neuroscience, 25, 74897498.Google Scholar
Lee, C. C., & Sherman, S. M. (2008). Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. Journal of Neurophysiology, 100, 317326.Google Scholar
Lee, C. C., & Sherman, S. M. (2009). Modulator property of the intrinsic cortical projection from layer 6 to layer 4. Frontiers in Systems Neuroscience, 3, 15.Google Scholar
Lee, C. C., & Sherman, S. M. (2012). Intrinsic modulators of auditory thalamocortical transmission. Hearing Research, 287, 4350.Google Scholar
Lee, J., & Maunsell, J. H. R. (2010). Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. Journal of Neuroscience, 30, 30583066.Google Scholar
Levitan, I. B., & Kaczmarek, L. K. (2002). The neuron: Cell and molecular biology. New York: Oxford University Press.Google Scholar
Litvina, E. Y., & Chen, C. (2017). Functional convergence at the retinogeniculate synapse. Neuron, 96, 330338.Google Scholar
Llano, D. A., & Sherman, S. M. (2009). Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cerebral Cortex, 19, 28102826.Google Scholar
Llinás, R. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system. Science, 242, 16541664.CrossRefGoogle ScholarPubMed
Lujan, R., Nusser, Z., Roberts, J. D., Shigemoto, R., Somogyi, P. (1996). Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. European Journal of Neuroscience, 8, 14881500.Google Scholar
MacLean, J. N., Watson, B. O., Aaron, G. B., & Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron, 48, 811823.Google Scholar
Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neuroscience, 29, 317322.Google Scholar
McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. Journal of Neurophysiology, 68, 13841400.CrossRefGoogle Scholar
Miller-Hansen, A.J., and Sherman, S.M. (2022) Conserved patterns of functional organization between cortex and thalamus in mice. Proc. Natl. Acad. Sci. (USA), in press.Google Scholar
Miller, E. K., & Buschman, T. J. (2013). Cortical circuits for the control of attention. Current Opinion in Neurobiology, 23, 216222.Google Scholar
Mineault, P. J., Tring, E., Trachtenberg, J. T., & Ringach, D. L. (2016). Enhanced spatial resolution during locomotion and heightened attention in mouse primary visual cortex. Journal of Neuroscience, 36, 63826392.Google Scholar
Mo, C., & Sherman, S. M. (2019). A sensorimotor pathway via higher-order thalamus. Journal of Neuroscience, 39, 692704.Google Scholar
Mott, D. D., & Lewis, D. V. (1994). The pharmacology and function of central GABAB receptors. International Review of Neurobiology, 36, 97223.Google Scholar
Nicoll, R. A., Malenka, R. C., & Kauer, J. A. (1990). Functional comparison of neurotransmitter receptor subtypes in mammalian central nervous system. Physiology Review, 70, 513565.Google Scholar
Nobre, K., Nobre, A., & Kastner, S. (2014). The Oxford handbook of attention. Oxford: Oxford University Press.Google Scholar
Osborne, L. C., Hohl, S. S., Bialek, W., & Lisberger, S. G. (2007). Time course of precision in smooth-pursuit eye movements of monkeys. Journal of Neuroscience, 27, 29872998.Google Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Reviews in Neuroscience, 35, 7389.Google Scholar
Petrof, I., Viaene, A. N., & Sherman, S. M. (2012). Synaptic properties of the lemniscal and paralemniscal somatosensory inputs to the mouse thalamus. Proceedings of the National Academy of Sciences of the United States of America, 114, E6212E6221.Google Scholar
Petrof, I., Viaene, A. N., & Sherman, S. M. (2015). Properties of the primary somatosensory cortex projection to the primary motor cortex in the mouse. Journal of Neurophysiology, 113, 2652.Google Scholar
Pin, J. P., & Duvoisin, R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology, 34, 126.Google Scholar
Posner, M. I. (2012). Cognitive neuroscience of attention. New York: Guilford Press.Google Scholar
Prasad, J. A., Carroll, B. J., & Sherman, S. M. (2020). Layer 5 corticofugal projections from diverse cortical areas: variations on a pattern of thalamic and extra-thalamic targets. Journal of Neuroscience, 40, 57855796.Google Scholar
Raastad, M., & Shepherd, G. M. (2003). Single-axon action potentials in the rat hippocampal cortex. Journal of Physiology, 548, 745752.Google Scholar
Ramcharan, E. J., Gnadt, J. W., & Sherman, S. M. (2005). Higher-order thalamic relays burst more than first-order relays. Proceedings of the National Academy of Sciences of the United States of America, 102, 1223612241.Google Scholar
Rathelot, J. A., & Strick, P. L. (2009). Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proceedings of the National Academy of Sciences of the United States of America, 106, 918923.Google Scholar
Recasens, M., & Vignes, M. (1995). Excitatory amino acid metabotropic receptor subtypes and calcium regulation. Annals of the New York Academy of Sciences, 757, 418429.Google Scholar
Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611647.Google Scholar
Sakai, S. T., Inase, M., & Tanji, J. (1996). Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study. Journal of Comparative Neurology, 368, 215228.Google Scholar
Sherman, S. M. (1996). Dual response modes in lateral geniculate neurons: mechanisms and functions. Visual Neuroscience, 13, 205213.Google Scholar
Sherman, S. M. (2001). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in Neurosciences, 24, 122126.CrossRefGoogle ScholarPubMed
Sherman, S. M. (2005). Thalamic relays and cortical functioning. Progress in Brain Research, 149, 107126.Google Scholar
Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical functioning. Nature Neuroscience, 19, 533541.Google Scholar
Sherman, S. M., & Guillery, R. W. (1996). The functional organization of thalamocortical relays. Journal of Neurophysiology, 76, 13671395.Google Scholar
Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators.Proceedings of the National Academy of Sciences of the United States of America, 95, 71217126.Google Scholar
Sherman, S. M., & Guillery, R. W. (2006). Exploring the thalamus and its role in cortical function (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Sherman, S. M., & Guillery, R. W. (2013). Functional connections of cortical areas: a new view from the thalamus. Cambridge, MA: MIT Press.Google Scholar
Sherman, SM, Usrey, WM (2021) Cortical control of behavior and attention from an evolutionary perspective. Neuron 109:3048–3064.Google Scholar
Snutch, T. P., & Reiner, P. B. (1992). Ca2+ channels: Diversity of form and function. Current Opinion in Neurobiology, 2, 247253.Google Scholar
Soltész, I., Lightowler, S., Leresche, N., & Crunelli, V. (1989). On the properties and origin of the GABAB inhibitory postsynaptic potential recorded in morphologically identified projection cells of the cat dorsal lateral geniculate nucleus. Neuroscience, 33, 2333.Google Scholar
Sommer, M. A., & Wurtz, R. H. (2004). What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge. Journal of Neurophysiology, 91, 14031423.Google Scholar
Sommer, M. A., & Wurtz, R. H. (2008). Brain circuits for the internal monitoring of movements. Annual Review of Neuroscience, 31, 317338.Google Scholar
Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative Neurology, 43, 482489.Google Scholar
Stein, B. E., & Gaither, N. S. (1983). Receptive-field properties in reptilian optic tectum: some comparisons with mammals. Journal of Neurophysiology, 50, 102124.Google Scholar
Stein, B. E., Stanford, T. R., & Rowland, B. A. (2009). The neural basis of multisensory integration in the midbrain: Its organization and maturation. Hearing Research, 258, 415.Google Scholar
Sur, M., Esguerra, M., Garraghty, P. E., Kritzer, M. F., & Sherman, S. M. (1987). Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat. Journal of Neurophysiology, 58, 132.Google Scholar
Suzuki, D. G., Perez-Fernandez, J., Wibble, T., Kardamakis, A. A., & Grillner, S. (2019). The role of the optic tectum for visually evoked orienting and evasive movements. Proceedings of the National Academy of Sciences of the United States of America, 116, 1527215281.Google Scholar
Suzuki, M., & Larkum, M. E. (2020). General anesthesia decouples cortical pyramidal neurons. Cell, 180, 666676.Google Scholar
Swadlow, H. A., & Gusev, A. G. (2001). The impact of “bursting” thalamic impulses at a neocortical synapse. Nature Neuroscience, 4, 402408.Google Scholar
Swadlow, H. A., Gusev, A. G., & Bezdudnaya, T. (2002). Activation of a cortical column by a thalamocortical impulse. Journal of Neuroscience, 22, 77667773.Google Scholar
Tamamaki, N., Uhlrich, D. J., & Sherman, S. M. (1995). Morphology of physiologically identified retinal X and Y axons in the cat’s thalamus and midbrain as revealed by intra-axonal injection of biocytin. Journal of Comparative Neurology, 354, 583607.Google Scholar
Ulrich, D., Besseyrias, V., & Bettler, B. (2007). Functional mapping of GABA(B)-receptor subtypes in the thalamus. Journal of Neurophysiology, 98, 37913795.Google Scholar
Usrey, W. M., Reppas, J. B., & Reid, R. C. (1999). Specificity and strength of retinogeniculate connections. Journal of Neurophysiology, 82, 35273540.Google Scholar
Van Horn, S. C., Erisir, A., & Sherman, S. M. (2000). The relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 416, 509520.Google Scholar
Van Horn, S. C., & Sherman, S. M. (2007). Fewer driver synapses in higher order than in first order thalamic relays. Neuroscience, 475, 406415.Google Scholar
Varela, C., & Sherman, S. M. (2007). Differences in response to muscarinic agonists between first and higher order thalamic relays. Journal of Neurophysiology, 98, 35383547.Google Scholar
Varela, C., & Sherman, S. M. (2008). Differences in response to serotonergic activation between first and higher order thalamic nuclei. Cerebral Cortex, 19, 17761786.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2011a). Properties of the thalamic projection from the posterior medial nucleus to primary and secondary somatosensory cortices in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 108, 1815618161.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2011b). Synaptic properties of thalamic input to layers 2/3 in primary somatosensory and auditory cortices. Journal of Neurophysiology, 105, 279292.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2011c). Synaptic properties of thalamic input to the subgranular layers of primary somatosensory and auditory cortices in the mouse. Journal of Neuroscience, 31, 1273812747.Google Scholar
Viaene, A. N., Petrof, I., & Sherman, S. M. (2013). Activation requirements for metabotropic glutamate receptors. Neuroscience Letters, 541, 6772.Google Scholar
von Graefe, A. (1854). Beiträge zur Physiologie und Pathologie der schiefen Augenmuskeln. Archiv für Opthlalmologie, 1, 181.Google Scholar
von Holst, E., & Mittelstaedt, H. (1950). The reafference principle. Interaction between the central nervous system and the periphery. In Selected papers of Erich von Holst: The behavioural physiology of animals and man (Martin, R., Trans.; Vol. 1, pp. 139173). Coral Gables, FL: University of Miami Press.Google Scholar
Wang, L., & Krauzlis, R. J. (2018). Visual selective attention in mice. Current Biology, 28, 676685.Google Scholar
Wang, L., McAlonan, K., Goldstein, S., Gerfen, C. R., & Krauzlis, R. J. (2020). A causal role for mouse superior colliculus in visual perceptual decision-making. Journal of Neuroscience, 40, 37683782.Google Scholar
Wang, S., Eisenback, M. A., & Bickford, M. E. (2002). Relative distribution of synapses in the pulvinar nucleus of the cat: Implications regarding the “driver/modulator” theory of thalamic function. Journal of Comparative Neurology, 454, 482494.Google Scholar
Wang, W., Jones, H. E., Andolina, I. M., Salt, T. E., & Sillito, A. M. (2006). Functional alignment of feedback effects from visual cortex to thalamus. Nature Neuroscience, 9, 13301336.Google Scholar
Wolpert, D. M., & Flanagan, J. R. (2010). Motor learning. Current Biology, 20, R467R472.Google Scholar
Wu, L. G., Borst, J. G., & Sakmann, B. (1998). R-type Ca2+ currents evoke transmitter release at a rat central synapse. Proceedings of the National Academy of Sciences of the United States of America, 95, 47204725.Google Scholar
Zaborszky, L., Gombkoto, P., Varsanyi, P., Gielow, M. R., Poe, G., Role, L. W., et al. (2018). Specific basal forebrain-cortical cholinergic circuits coordinate cognitive operations. Journal of Neuroscience, 38, 94469458.Google Scholar
Zhan, X. J., Cox, C. L., Rinzel, J., & Sherman, S. M. (1999). Current clamp and modeling studies of low threshold calcium spikes in cells of the cat’s lateral geniculate nucleus. Journal of Neurophysiology, 81, 23602373.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Anatomy
  • Edited by Michael M. Halassa, Massachusetts Institute of Technology
  • Book: The Thalamus
  • Online publication: 12 August 2022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Anatomy
  • Edited by Michael M. Halassa, Massachusetts Institute of Technology
  • Book: The Thalamus
  • Online publication: 12 August 2022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Anatomy
  • Edited by Michael M. Halassa, Massachusetts Institute of Technology
  • Book: The Thalamus
  • Online publication: 12 August 2022
Available formats
×