Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-02T21:17:19.777Z Has data issue: false hasContentIssue false

4 - A Lagrangian View of Turbulent Dispersion and Mixing

Published online by Cambridge University Press:  05 February 2013

Jean-François Pinton
Affiliation:
École Normale Supérieure de Lyon
Peter A. Davidson
Affiliation:
University of Cambridge
Yukio Kaneda
Affiliation:
Aichi Institute of Technology, Japan
Katepalli R. Sreenivasan
Affiliation:
New York University
Get access

Summary

Introduction

For good practical reasons, most experimental observations of turbulent flow are made at fixed points x in space at time t and most numerical calculations are performed on a fixed spatial grid and at fixed times. On the other hand, it is possible to describe the flow in terms of the velocity and concentration (and other quantities of interest) at a point moving with the flow. This is known as a Lagrangian description of the flow ((Monin and Yaglom, 1971)). The position of this point x+(t; x0, t0) is a function of time and of some initial point x0 and time t0 at which it was identified or “labelled”. Its velocity is the velocity of the fluid where it happens to be at time t, u+ (t; x0, t0) = u(x+(t), t). We will use the superscript (+) to denote Lagrangian quantities, and quantities after the semi-colon are independent parameters. We refer to a point moving in this way as a fluid particle.

Flow statistics obtained at fixed points and times are known as Eulerian statistics. On the other hand, statistics obtained at specific times by sampling over trajectories, which at some reference times passed through fixed points, are known as Lagrangian statistics. For example, the mean displacement at time t of those particles that passed through the point x0 at time t0 is just 〈x+ (t; x0, t0) − x0. In both cases, the measurement time t can be earlier or later than the reference time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aliseda, A.Cartellier, A., Hainaux, F. and Lasheras, J.C. (2002). Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 468, 77–105.Google Scholar
Aringazin, A.K. (2004). Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities. Phys. Rev.E, 70, 036301–1–8.Google Scholar
Aringazin, A.K. and Mazhitov, M.I. (2004). One-dimensional Langevin models of fluid particle acceleration in developed turbulence. Phys. Rev.E, 69, 026305–1–17.Google Scholar
Arneodo, A., Benzi, R., Berg, J., Biferale, L., Bodenschatz, E., Busse, A., Calzavarini, E., Castaing, B., Cencini, M., Chevillard, L., Fisher, R. T., Grauer, R., Homann, H., Lamb, D.Lanotte, A. S., Leveque, E., Luthi, B., Mann, J., Mordant, N., Muller, W.-C., Ott, S., Ouellette, N. T., Pinton, J.-F., Pope, S. B., Roux, S. G., Toschi, F., Xu, H. and Yeung, P. K. (2008). Universal intermittent properties of particle trajectories in highly turbulent flows. Phys. Rev. Lett., 100, 254504–1–4.Google Scholar
Auton, T., Hunt, J.C.R. and Prud'homme, M. (1988). The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech., 197, 241–257.CrossRefGoogle Scholar
Ayyalasomayajula, S., Gylfason, A., Collins, L.R., Bodenschatz, E. and Warhaft, Z. (2006). Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett., 97, 144507–1–4.CrossRefGoogle Scholar
Balkovsky, E., Falkovich, G. and Fouxon, A. (2001). Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett., 86, 2790–93.CrossRefGoogle Scholar
Batchelor, G.K. (1950) The application of the similarity theory of turbulence to atmospheric diffusion. Q.J.R. Meteorol. Soc., 76, 133–146.Google Scholar
Batchelor, G.K. (1952). Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proc. Cambridge Philos. Soc., 48, 345–62.CrossRefGoogle Scholar
Batchelor, G. K. (1959). Small-scale variation of convected quantities like temperature in a turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113–133.CrossRefGoogle Scholar
Bec, J., Biferale, L., Boffetta, G., Celani, A., Cencini, C., Lanotte, A., Musacchio, S. and Toschi, F. (2006). Acceleration statistics of heavy particles in turbulence. J. Fluid Mech., 550, 349–358.CrossRefGoogle Scholar
Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F. and Succi, S. (1993). Extended self-similarity in turbulent flows. Phys. Rev.E, 48, R29–R32.Google Scholar
Berg, J., Lüthi, B., Mann, J. and Ott, S. (2006). Backwards and forwards relative dispersion in turbulent flow: An experimental investigation. Phys. Rev.E, 74, 016304.Google Scholar
Berg, J., Ott, S., Mann, J. and Lüthi, B. (2009). Experimental investigation of Lagrangian structure functions in turbulence, Phys. Rev.E, 80, 026316–1–11.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. and Toschi, F. (2005a). Lagrangian statistics of particle pairs in homogeneous isotropic turbulence. Phys. Fluids, 17, 115101–1–9.Google Scholar
Biferale, L., Boffetta, G., Celani, A., Devenish, B. J., Lanotte, A. and Toschi, F. (2005b). Multiparticle dispersion in fully developed turbulence. Phys. Fluids, 17, 111701–1–4.Google Scholar
Biferale, L., Bodenschatz, E., Cencini, M., Lanotte, A. S., Ouellette, N. T., Toschi, F. and Xu, H. (2008). Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation. Phys. Fluids, 20, 065103–1–12.Google Scholar
Borgas, M.S. (1993). The multifractal Lagrangian nature of turbulence. Phil. Trans. R. Soc.A, 342, 379–411.CrossRefGoogle Scholar
Borgas, M.S. (1998). Meandering plume models in turbulent flows. In Proc. 13th Australasian Fluid Mechanics Conference, Melbourne Australia: Monash University, 139–142.
Borgas, M.S. and Sawford, B.L. (1991). The small-scale structure of acceleration correlations and its role in the statistical theory of turbulent dispersion. J. Fluid Mech., 228, 295–320.Google Scholar
Borgas, M.S. and Sawford, B.L. (1994a). Stochastic equations with multifractal random increments for modelling turbulent dispersion, Phys. Fluids, 6, 618–633.Google Scholar
Borgas, M.S. and Sawford, B.L. (1994b). A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence, J. Fluid Mech., 279, 69–99.Google Scholar
Borgas, M.S., Sawford, B.L., Xu, S., Donzis, D. and Yeung, P.K. (2004). High Schmidt number scalars in turbulence: structure functions and Lagrangian theory. Phys. Fluids, 16, 3888–3899.CrossRefGoogle Scholar
Bourgoin, M., Ouellette, N.T., Xu, H., Berg, J. and Bodenschatz, E. (2006). The role of pair dispersion in turbulent flow. Science, 311, 935–838.Google Scholar
Braun, W., De Lillo, F. and Eckhardt, B. (2006). Geometry of particle paths in turbulent flows, J. Turbul. 7, N62, 1–10.CrossRefGoogle Scholar
Brown, R., Warhaft, Z., Voth, G. (2009). Acceleration statistics of neutrally buoyant spherical particles in intense turbulence. Phys. Rev. Lett., 103, 194501–1–4.Google Scholar
Calzavarini, E., Volk, R., Lévêque, E., Bourgoin, B., Toschi, F. and Pinton, J.-F. (2009). Acceleration statistics of finite-size particles in turbulent flow: the role of Faxén corrections. J. Fluid Mech., 630, 179–189.CrossRefGoogle Scholar
Cassiani, M., Radicchi, A., Albertson, J. D. and Giostra, U. (2007). An efficient algorithm for scalar PDF modeling in incompressible turbulent flows; numerical analysis with evaluation of IEM and IECM micro-mixing models. J. Computat. Phys., 223, 519–550.CrossRefGoogle Scholar
Castiglione, P. and Pumir, A. (2001). Evolution of triangles in a two-dimensional turbulent flow. Phys. Rev.E, 64, 056303–1–11.Google Scholar
Celani, A. and Vergassola, M. (2001). Statistical geometry in scalar turbulence. Phys. Rev. Lett., 86, 424–1–4.CrossRefGoogle Scholar
Chen, L., Goto, S. and Vassilicos, J.C. (2006). Turbulent clustering of stagnation points and inertial particles, J. Fluid Mech., 553, 143–154.CrossRefGoogle Scholar
Chertkov, M., Falkovich, G., Kolokoloov, I. and Lebedev, V. (1995). Normal and anomalous scaling of the fourth-order structure function of a randomly advected passive scalar. Phys. Rev.E, 52, 4924–4941.CrossRefGoogle Scholar
Chevillard, L., Roux, S.G., Lévêque, E.Mordant, N.Pinton, J.-F. and Arnèodo, A. (2003). Lagrangian velocity statistics in turbulent flows: Effects of dissipation. Phys. Rev. Lett., 91, 214501–1–4.Google Scholar
Chevillard, L., Castaing, B., Lévêque, E. and Arnéodo, A. (2006). Unified multi-fractal description of velocity increments statistics in turbulence: Intermittency and skewness. PhysicaD, 218, 77–82.Google Scholar
Choi, Jung-Il, Yeo, K. and Lee, C. (2004). Lagrangian statistics in turbulent channel flow. Phys. Fluids, 16, 779–793.CrossRefGoogle Scholar
Coleman, S.W. and Vassilicos, J.C., (2009). A unified sweep-stick mechanism to explain particle clustering in two- and three-dimensional homogeneous, isotropic turbulence. Phys. Fluids, 21, 113301–1–10.Google Scholar
Corrsin, S. (1959). Progress report on some turbulent diffusion research. Adv. Geophys., 6, 161–164.CrossRefGoogle Scholar
Crawford, A.M., Mordant, N. and Bodenschatz, E. (2005). Joint statistics of the Lagrangian acceleration and velocity in fully developed turbulence, Phys. Rev. Lett., 94, 024501–1–4.Google Scholar
Csanady, G.T. (1963). Turbulent diffusion of heavy particles in the atmosphere. J. Atmos. Sci., 20, 201–208.2.0.CO;2>CrossRefGoogle Scholar
Donzis, D.A., Sreenivasan, K.R., Yeung, P.K. (2005). Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech., 532, 199–216.CrossRefGoogle Scholar
Dopazo, C. (1975). Probability density function approach for a turbulent axisymmetric heated jet. Centreline evolution. Phys. Fluids, 18, 397–410.CrossRefGoogle Scholar
Falkovich, G., Gaweedzki, K. and Vergassola, M. (2001). Particles and fields in fluid turbulence. Rev. Mod. Phys 73, 913.Google Scholar
Falkovich, G. and Pumir, A. (2004). Intermittent distribution of heavy particles in a turbulent flow. Phys. Fluids, 16, L47–50.Google Scholar
Falkovich, G. and Sreenivasan, K.R. (2006). Lessons from hydrodynamic turbulence. Physics Today, (April), 43–49.CrossRefGoogle Scholar
Faxén, H. (1922). Der widerstand gegen die bewegung einer starren kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Annalen der Physik, 373, 99–119.CrossRefGoogle Scholar
Frisch, U. (1985). Fully developed turbulence and intermittency. In Proceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. M., Ghil, R., Benzi and G., Parisi (eds.) Amsterdam: North-Holland.
Frisch, U., Mazzino, A., Noullez, A. and Vergassola, M. (1999). Lagrangian method for multiple correlations in passive scalar advection. Phys. Fluids, 11, 2178–2186.CrossRefGoogle Scholar
Gardiner, C.W., (1983). Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences. Berlin: Springer.CrossRef
Gasteuil, Y. (2009). PhD Thesis, Instrumentation Lagrangienne en Turbulence: Mise en Öuvre et Analyse, École Normale Supérieure de Lyon.
Gatignol, R. (1983). The Faxén formulae for a rigid particle in an unsteady non-uniform stokes flow. J. Mec. Theor. Appl., 1, 143–160.Google Scholar
Gaweedzki, K. and Kupiainen, A. (1995). Anomalous scaling of the passive scalar. Phys. Rev. Lett., 75, 3834–3837.CrossRefGoogle Scholar
Gerashchenko, S., Sharp, N., Neuscamman, S. and Warhaft, Z. (2008). Lagrangian measurements of inertial particle accelerations in a turbulent boundary layer. J. Fluid Mech., 617, 255–281.CrossRefGoogle Scholar
Gotoh, T. and Fukayama, D. (2001). Pressure spectrum in homogeneous turbulence. Phys. Rev. Lett., 86, 3775–3778.CrossRefGoogle Scholar
Griffa, A. (1996) Applications of stochastic particle models to oceanographic problems. In Stochastic Modeling in Physical Oceanography, R., Adler, P., Muller, and B., Rozovskii (eds.), Birkhäuser Verlag, 114–140.CrossRef
Hackl, J.F., Yeung, P.K. and Sawford, B.L. (2011). Multi-particle and tetrad statistics in numerical simulations of turbulent relative dispersion. Phys. Fluids, 23, 063103–1–20.Google Scholar
Haworth, D.C. and Pope, S.B. (1986). A generalized Langevin model for turbulent flows. Phys. Fluids, 29, 387–405.CrossRefGoogle Scholar
Homann, H., Kamps, O., Friedrich, R. and Grauer, R. (2009). Bridging from Eulerian to Lagrangian statistics in 3D hydro- and magnetohydrodynamic turbulent flows. New J. Phys., 11, 073020–1–15.CrossRefGoogle Scholar
Homann, H. and Bec, J. (2010). Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech., 651, 91–91.CrossRefGoogle Scholar
Hwang, W. and Eaton, J.K. (2004). Creating homogeneous and isotropic turbulence without a mean flow. Exp. Fluids, 36, 444–454.CrossRefGoogle Scholar
Iliopoulos, I. and Hanratty, T.J. (1995) Turbulent dispersion in a non-homogeneous field. J. Fluid Mech., 392, 45–71.Google Scholar
Ishihara, T. and Kaneda, Y. (2002). Relative diffusion of a pair of fluid particles in the inertial subrange of turbulence. Phys. Fluids, 14, L69–L72.Google Scholar
Kamps, O., Friedrich, R. and Grauer, R. (2009). Exact relation between Eulerian and Lagrangian velocity increment statistics. Phys. Rev.E, 79, 066301–1–5.CrossRefGoogle Scholar
Kellay, H. and Goldburg, W.I. (2002). Two-dimensional turbulence: a review of some recent experiments. Rep. Prog. Phys., 65, 945–894.CrossRefGoogle Scholar
Kraichnan, R.H. (1974). Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech., 64, 737–762.CrossRefGoogle Scholar
Kurbanmuradov, O.A. (1997). Stochastic Lagrangian models for two-particle relative dispersion in high-Reynolds number turbulence. Monte Carlo Methods and Appl., 3, 37–52.CrossRefGoogle Scholar
La Porta, A., Voth, G.A., Crawford, A. M., Alexander, J. and Bodenschatz, E. (2001). Fluid particle accelerations in fully developed turbulence. Nature, 409, 1017–1019.CrossRef
Lamorgese, A.G., Pope, S.B., Yeung, P.K. and Sawford, B.L. (2007). A conditionally cubic-Gaussian stochastic Lagrangian model for acceleration in isotropic turbulence, J. Fluid Mech., 582, 423–448.CrossRefGoogle Scholar
Laval, J.-P., Dubrulle, B. and Nazarenko, S. (2001). Nonlocality and intermittency in three-dimensional turbulence. Phys. Fluids, 13, 1995–2012.CrossRefGoogle Scholar
Li, Y., Chevillard, L., Eyink, G. and Meneveau, C. (2009). Matrix exponential-based closures for the turbulent subgrid-scale stress tensor. Phys. Rev.E, 79, 016305–1–9.Google Scholar
Lüthi, B., Ott, S., Berg, J., Mann, J. (2007). Lagrangian multi-particle statistics. J. Turbul., 8, N45, 1–17.Google Scholar
Luhar, A.K. and Sawford, B.L. (2005). Micromixing modelling of concentration fluctuations in inhomogeneous turbulence in the convective boundary layer. Bound. Layer Meteorol., 114, 1–30.CrossRefGoogle Scholar
Maxey, M.R. (1987). The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441–465.CrossRefGoogle Scholar
Meneveau, C. (1996). On the cross-over between viscous and inertial-range scaling of turbulence structure functions. Phys. Rev.E, 54, 3657–3663.CrossRefGoogle Scholar
Monin, A.S. and Yaglom, A.M. (1971). Statistical Fluid Mechanics: Mechanics of Turbulence Vol. 1. Cambridge MA: MIT Press.
Monin, A.S. and Yaglom, A.M. (1975). Statistical Fluid Mechanics: Mechanics of Turbulence Vol. 2. Cambridge MA: MIT Press.
Mordant, N., Metz, P., Michel, O. and Pinton, J.-F. (2001). Measurement of Lagrangian velocity in fully developed turbulence. Phys. Rev. Lett., 87, 214501–1–4.Google Scholar
Mordant, N., Delour, J., Lévêque, E., Arnéodo, A. and Pinton, J.-F. (2002). Long time correlations in Lagrangian dynamics: A key to intermittency in turbulence. Phys. Rev. Lett., 89, 254502–1–4.Google Scholar
Mordant, N., Lévêque, E. and Pinton, J.-F. (2004a). Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J. Phys., 6, 116–1–44.Google Scholar
Mordant, N., Crawford, A.M. and Bodenschatz, E. (2004b). Experimental Lagrangian acceleration probability density function measurement. PhysicaD, 193, 245–251.Google Scholar
Naso, A., Pumir, A. and Chertkov, M. (2007). Statistical geometry in homogeneous and isotropic turbulence., J. Turbul. 8, N39, 1–13.CrossRefGoogle Scholar
Naso, A. and Prosperetti, A., (2010). The interaction between a solid particle and a turbulent flow. New J. Phys., 12, 033040–1–20.CrossRefGoogle Scholar
Nelkin, M. (1990). Multifractal scaling of velocity derivatives in turbulence. Phys. Rev.A, 42, 7226–9.CrossRefGoogle Scholar
Obukhov, A.M. (1941). On the distribution of energy in the spectrum of turbulent flow. Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5, 453–468.Google Scholar
Ott, S. and Mann, J. (2000). An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech., 422, 207–223.CrossRefGoogle Scholar
Ott, S. and Mann, J. (2005). An experimental test of Corrsin's conjecture and some related ideas. New J. Phys., 7, N142, 1–24.Google Scholar
Ouellette, N.T., Xu, H., Bourgoin, M. and Bodenschatz, E. (2006). Small-scale anisotropy in Lagrangian turbulence. New J. Phys., 8, 102–1–10.Google Scholar
Overholt, M.R. and Pope, S.B. (1996). Direct numerical simulation of a passive scalar with imposed mean gradient in isotropic turbulence. Phys. Fluids, 8, 3128–3148.CrossRefGoogle Scholar
Pagnini, G. (2008). Lagrangian stochastic models for turbulent relative dispersion based on particle pair rotation. J. Fluid Mech., 616, 357–395.CrossRefGoogle Scholar
Pasquill, F. and Smith, F.B. (1993). Atmospheric Diffusion. Chichester: Ellis Horwood.
Pope, S.B. and Chen, Y.L. (1990). The velocity-dissipation probability density function model for turbulent flows. Phys. FluidsA, 2, 1437–1449.CrossRefGoogle Scholar
Pope, S.B. (1985). PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci., 11, 119–192.CrossRefGoogle Scholar
Pope, S.B. (1994). Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech., 26, 23–63.CrossRefGoogle Scholar
Pope, S.B. (1998). The vanishing effect of molecular diffusivity on turbulent dispersion: implications for turbulent mixing and the scalar flux. J. Fluid Mech., 359, 299–312.CrossRefGoogle Scholar
Pope, S.B. (2000). Turbulent Flows. Cambridge: Cambridge University Press.CrossRef
Pumir, A., Shraiman, B.I. and Chertkov, M. (2000). Geometry of Lagrangian dispersion in turbulence. Phys. Rev. Lett., 85, 5324–5327.CrossRefGoogle Scholar
Pumir, A., Shraiman, B.I. and Chertkov, M. (2001). The Lagrangian view of energy transfer in turbulent flow. Europhys. Lett., 56, 379–385.CrossRefGoogle Scholar
Qureshi, N.M., Bourgoin, M., Baudet, C., Cartellier, A. and Gagne, Y. (2007). Turbulent transport of material particles: An experimental study of finite size effects. Phys. Rev. Lett., 99, 184502–1–4.Google Scholar
Qureshi, N.M., Arrieta, U., Baudet, C., Cartellier, A., Gagne, Y. and Bourgoin, M. (2008). Acceleration statistics of inertial particles in turbulent flow. Eur. Phys. J. B, 66, 531–536.CrossRefGoogle Scholar
Rast, M. and Pinton, J.-F. (2009). Point-vortex model for Lagrangian intermittency in turbulence. Phys. Rev.E, 79, 046314–1–4.Google Scholar
Reade, W.C. and Collins, L.R. (2000). Effect of preferential concentration on turbulent collision rates. Phys. Fluids, 12, 2530–2540.CrossRefGoogle Scholar
Reynolds, A.M. (2003). Superstatistical mechanics of tracer-particle motions in turbulence. Phys. Rev. Lett., 91, 084503–1–4.Google Scholar
Richardson, L.F. (1926). Atmospheric diffusion shown on a distance neighbour graph. Proc. Roy. Soc. Lond.A, 110, 709–737.CrossRefGoogle Scholar
Rodean, H.C. (1996). Stochastic Lagrangian Models of Turbulent Diffusion. Meteorological Monographs, Vol. 26, No. 48, Boston: Am. Meteor. Soc.CrossRef
Salazar, J.P.L.C., de Jong, J., Cao, L., Woodward, S.H., Meng, H. and Collins, L.R. (2008). Experimental and numerical investigation of inertial particle clustering in isotropic turbulence. J. Fluid Mech., 600, 245–256.Google Scholar
Salazar, J.P.L.C. and Collins, L.R. (2008). Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech., 41, 405–432.CrossRefGoogle Scholar
Saffman, P.G. (1960). On the effect of the molecular diffusivity in turbulent diffusion. J. Fluid Mech., 8, 273–283.CrossRefGoogle Scholar
Saffman, P.G. (1963). On the fine-scale structure of vector fields convected by a turbulent fluid. J. Fluid Mech., 16, 545–572.CrossRefGoogle Scholar
Saw, E.W., Shaw, R.A., Ayyalasomayajula, A., Chuang, P. and Gylfarson, A. (2008). Inertial clustering of particles in high-Reynolds-number turbulence. Phys. Rev. Lett., 100, 214501–1–4.Google Scholar
Sawford, B.L. (1985). Lagrangian statistical simulation of concentration mean and fluctuation fields. J. Climat. Appl. Meteorol., 24, 1152–1166.2.0.CO;2>CrossRefGoogle Scholar
Sawford, B.L. (1991). Reynolds number effects in Lagrangian stochastic models of dispersion. Phys. Fluids, A3, 1577–1586.CrossRefGoogle Scholar
Sawford, B.L. (1993). Recent developments in the Lagrangian stochastic theory of turbulent dispersion. Boundary-Layer Meteorol., 62, 197–215.CrossRefGoogle Scholar
Sawford, B.L. (2001). Turbulent relative dispersion. Annu. Rev. Fluid Mech., 33, 289–317.CrossRefGoogle Scholar
Sawford, B.L. (2004). Micro-mixing modelling of scalar fluctuations for plumes in homogeneous turbulence, Flow, Turb. Combust., 72, 133–160.Google Scholar
Sawford, B.L. (2006). A study of the connection between exit-time statistics and relative dispersion using a simple Lagrangian stochastic model. J. Turbul., 7, (13), 1–10.Google Scholar
Sawford, B.L. and Yeung, P.K. (2001). Lagrangian statistics in uniform shear flow: Direct numerical simulation and Lagrangian stochastic models. Phys. Fluids, 13, 2626–2634.Google Scholar
Sawford, B.L. and Guest, F.M. (1991). Lagrangian statistical simulation of the turbulent motion of heavy particles. Boundary-Layer Meteorol., 54, 147–166.CrossRefGoogle Scholar
Sawford, B.L., Yeung, P.K., Borgas, M.S., Vedula, P., La Porta, A., Crawford, A.M. and Bodenschatz, E. (2003). Conditional and unconditional acceleration statistics in turbulence. Phys. Fluids, 15, 3478–3489.CrossRefGoogle Scholar
Sawford, B.L., Yeung, P.K. and Borgas, M.S. (2005). Comparison of backwards and forwards relative dispersion in turbulence. Phys. Fluids, 17, 095109–1–9.Google Scholar
Sawford, B.L., Yeung, P.K. and Hackl, J. F. (2008). Reynolds number dependence of relative dispersion statistics in isotropic turbulence. Phys. Fluids, 20, 065111–1–13.Google Scholar
Shen, P. and Yeung, P.K. (1997). Fluid particle dispersion in homogeneous turbulent shear flow. Phys. Fluids, 9, 3472.Google Scholar
Shlien, D.J. and Corrsin, S., (1974). A measurement of Lagrangian velocity auto-correlation in approximately isotropic turbulence. J. Fluid Mech., 62, 255–271.CrossRefGoogle Scholar
Shraiman, B. and Siggia, E. (1995). Anomalous scaling of a passive scalar in turbulent flow. C. R. Acad. Sci. Ser. II, 321, 279–284.Google Scholar
Shraiman, B.I. and Siggia, E.D. (2000). Scalar turbulence. Nature, 405, 639–646.CrossRef
Smyth, W.D. (1999). Dissipation-range geometry and scalar spectra in sheared stratified turbulence. J. Fluid Mech., 401, 209–242.CrossRefGoogle Scholar
Snyder, W.H. and Lumley, J.L. (1971). Some measurements of particle velocity autocorrelation functions in a turbulent flow. J. Fluid Mech., 48, 41–71.CrossRefGoogle Scholar
Squires, K.D. and Eaton, J.K. (1991a). Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence. J. Fluid Mech., 226, 1–35.Google Scholar
Squires, K.D. and Eaton, J.K. (1991b). Preferential concentration of particles by turbulence. Phys. FluidsA, 3, 1169–1178.Google Scholar
Sundaram, S. and Collins, L.R. (1997). Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech., 335, 75–109.CrossRefGoogle Scholar
Tabeling, P. (2002). Two-dimensional turbulence: a physicist approach. Phys. Rep., 362, 1–62.CrossRef
Taylor, G.I. (1921). Diffusion by continuous movements. Proc. London Math. Soc.Ser. 2, 20, 196–211.Google Scholar
Tennekes, H. and Lumley, J.L. (1972). A First Course in Turbulence. Cambridge MA: MIT.
Thomson, D.J. (1987). Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529–556.CrossRefGoogle Scholar
Thomson, D.J. (1990). A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech., 210, 113–153.CrossRefGoogle Scholar
Toschi, F. and Bodenschatz, E. (2009). Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech., 41, 375–404.CrossRefGoogle Scholar
Variano, E.A., Bodenschatz, E. and Cowen, E.A. (2004). A random synthetic jet array driven turbulence tank. Exp. Fluids, 37, 613–615.CrossRefGoogle Scholar
Vedula, P. and Yeung, P.K. (1999). Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids, 11, 1208–1220.CrossRefGoogle Scholar
Villermaux, J. and Devillon, J.C. (1972). In Proceedings of the Second International Symposium on Chemical Reaction Engineering, New York: Elsevier.
Viswanathan, S. and Pope, S.B. (2008). Turbulent dispersion from line sources in grid turbulence. Phys. Fluids, 20, 101514–1–25.CrossRefGoogle Scholar
Volk, R., Calzavarini, E., Verhillea, G., Lohse, D., Mordant, N., Pinton, J.-F. and Toschi, F. (2008a). Acceleration of heavy and light particles in turbulence: Comparison between experiments and direct numerical simulations. PhysicaD, 237, 2084–2089.Google Scholar
Volk, R., Mordant, N., Verhille, G. and Pinton, J.-F. (2008b). Measurement of particle and bubble acceleration in turbulence. Europhys. Lett., 81, 34002.Google Scholar
Volk, R., Calzavarini, E., Lévêque, E. and Pinton, J.-F. (2011). Dynamics of inertial range particles in a turbulent flow, J. Fluid Mech., 668, 223–235.CrossRefGoogle Scholar
Voth, G.A., Satyanarayan, K. and Bodenschatz, E. (1998). Lagrangian acceleration measurements at large Reynolds numbers. Phys. Fluids, 10, 2268–2280.CrossRefGoogle Scholar
Voth, G.A., La Porta, A., Crawford, A.M., Alexander, J. and Bodenschatz, E. (2002). Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech., 469, 121–160.Google Scholar
Wang, L-P. and Maxey, M.R. (1993). Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256, 21–68.Google Scholar
Wells, M.R. and Stock, D.E. (1983). The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J. Fluid Mech., 136, 31–62.CrossRefGoogle Scholar
Wilczek, M., Jenko, M. and Friedrich, R. (2008). Lagrangian particle statistics in turbulent flows from a simple vortex model. Phys. Rev.E, 77, 056301–1–6.Google Scholar
Wilson, J.D. and Sawford, B.L. (1996). Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Boundary-Layer Meteorol., 78, 191–210.CrossRefGoogle Scholar
Xu, H., Bourgoin, M., Ouellette, N.T. and Bodenschatz, E. (2006). High order Lagrangian velocity statistics in turbulence. Phys. Rev. Lett., 96, 024503–1–4.Google Scholar
Xu, H., Ouellette, N. T. and Bodenschatz, E. (2007). Curvature of Lagrangian trajectories in turbulence. Phys. Rev. Lett., 98, 050201–1–4.Google Scholar
Xu, H., Ouellette, N.T. and Bodenschatz, E. (2008). Evolution of geometric structures in intense turbulence. New J. Phys., 10, 013012–1–9.Google Scholar
Yeung, P.K. (2001). Lagrangian characteristics of turbulence and scalar transport in direct numerical simulations, J. Fluid Mech., 427, 241–274.CrossRefGoogle Scholar
Yeung, P.K. (2002). Lagrangian investigations of turbulence, Annu. Rev. Fluid Mech., 34, 115–42.CrossRefGoogle Scholar
Yeung, P.K. and Borgas, M.S. (1997). Molecular path statistics in turbulence: simulation and modeling. Proceedings of the First AFOSR International Conference on Direct Numerical Simulation and Large Eddy Simulation (DNS/LES), Ruston, LA: Louisiana Tech University.
Yeung, P.K. and Borgas, M.S. (2004). Relative dispersion in isotropic turbulence: Part 1. Direct numerical simulations and Reynolds number dependence. J. Fluid Mech., 503, 93–124.CrossRefGoogle Scholar
Yeung, P.K. and Pope, S.B. (1989). Lagrangian statistics from direct numerical simulations of isotopic turbulence. J. Fluid Mech., 207, 531.Google Scholar
Yeung, P.K., Pope, S.B. and Sawford, B.L. (2006a). Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbul., 7, N58, 1–12.Google Scholar
Yeung, P.K., Pope, S.B., Lamorgese, A.G. and Donzis, D.A. (2006b). Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids, 18, 065103–1–14.Google Scholar
Yeung, P.K., Pope, S.B., Kurth, E.A. and Lamorgese, A.G. (2007). Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence. J. Fluid Mech., 582, 399–422.CrossRefGoogle Scholar
Zimmermann, R., Xu, H., Gasteuil, Y., Bourgoin, M., Volk, R., Pinton, J.-F. and Bodenschatz, E. (2011). The Lagrangian exploration module: An apparatus for the study of statistically homogeneous and isotropic turbulence. Rev. Sci. Instr., 81, 055112–1–8.Google Scholar
Zhuang, Y., Wilson, J.D. and Lozowski, E.P. (1989). A trajectory-simulation model for heavy particle motion in turbulent flow. J. Fluids Eng., 111, 492–494.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×