Published online by Cambridge University Press: 05 July 2015
In recent years many efforts have been invested in comprehensively evaluating the behavior and relationships of all genes/proteins in a particular biological system and at a particular state. Here, we review how genome-wide RNAi screens together with mass spectrometry can be integrated to generate high-confidence functional interac- tome networks. Next we review the mathematical modeling methods available today that allow the computational reconstruction of such networks. Network modeling will play an important role in generating hypotheses, driving further experimentation and thus novel insights into network structure and behavior.
Introduction
Most biologists study a specific biological problem by investigating the activities of a limited number of genes or proteins involved in a particular biological process. This traditional approach is critical and has proven to be extremely successful to reveal the detailed molecular functions of individual genes and proteins. For example, genetic studies of embryonic patterning in Drosophila identified about 40 genes with striking segmentation defects that fell into distinct phenotypic classes: gap genes, pair rule genes, segment polarity genes, and homeotic genes (Nusslein-Volhard & Wieschaus 1980). Detailed analyses of the mutant phenotypes and functions of even this relatively small set of genes led to a comprehensive molecular framework of the process of embryonic patterning (St Johnston & Nusslein-Volhard 1992). Reductionist approaches, however, are not sufficient for generating the big picture of how a biological system, including multiple levels of many different gene products and the interactions among them, works at different physiological states or developmental stages (Friedman & Perrimon 2007). Thus, as our knowledge of individual genes and proteins accumulates, there is a need to comprehensively evaluate the behavior and relationships of all genes/proteins in a particular biological system and at a particular state. In recent years, progress has been made in multi cellular organisms towards this goal mostly in tissue culture, a platform that allows a sufficient amount of homogeneous material to be easily obtained.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.