Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T22:52:26.368Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 May 2010

Anders Kock
Affiliation:
Aarhus Universitet, Denmark
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrose, W. and Singer, I. M. (1953) A theorem on holonomy, Transactions of the American Mathematical Society 75, 428–443.CrossRefGoogle Scholar
Baez, J. and Schreiber, U. (2006) Higher Gauge Theory, arXiv:math/0511710v2 [math.DG].
Barr, M. (1971) Exact categories, in Barr, M., Grillet, P. A. and Osdol, D. H. (eds), Exact Categories and Categories of Sheaves, Springer Lecture Notes in Mathematics, Vol. 236, pp. 1–120.CrossRefGoogle Scholar
Bell, J. (1998) A Primer of Infinitesimal Analysis, Cambridge University Press.Google Scholar
Bergeron, F. (1980) Objet infinitésimal en géométrie différentielle synthétique, Exposé 10 in Rapport de Recherches du Dépt. de Math. et de Stat. 80-11 and 80-12, Université de Montréal.
Bishop, R. L. and Crittenden, R. J. (1964) Geometry of Manifolds, Academic Press.Google Scholar
Breen, L. and Messing, W. (2001) Combinatorial differential forms, Advances in Math. 164, 203–282.CrossRefGoogle Scholar
Brown, R. and Higgins, P. J. (1981) On the algebra of cubes, Journal of Pure and Applied Algebra 21, 233–260.CrossRefGoogle Scholar
Brown, R. and Spencer, C. (1976) Double groupoids and crossed modules, Cahiers de Topologie et Géométrie Différentielle 17, 343–362.Google Scholar
Bunge, M. and Dubuc, E. (1987) Local concepts in synthetic differential geometry and germ representability, in Kueker, E., Lopez-Escobar, E. G. K. and Smith, C. H. (eds), Mathematical Logic and Theoretical Computer Science, Marcel Dekker.Google Scholar
Burke, W. L. (1985) Applied Differential Geometry, Cambridge University Press.CrossRefGoogle Scholar
Demazure, M. and Gabriel, P. (1970) Groupes AlgébriquesTome I, Masson and North Holland.Google Scholar
Dubuc, E. (1979) Sur les modèles de la géometrie différentielle synthétique, Cahiers de Topologie et Géométrie Différentielle 20, 231–279.Google Scholar
Dubuc, E. (1990) Germ representability and local integration of vector fields in a well adapted model of SDG, Journal of Pure and Applied Algebra 64, 131–144.CrossRefGoogle Scholar
Dubuc, E. and Kock, A. (1984) On 1-form classifiers, Communications in Algebra 12, 1471–1531.CrossRefGoogle Scholar
Ehresmann, C. (1954) Structures locales, Annali di Matematica, 133–142.CrossRefGoogle Scholar
Ehresmann, C. (1950) Les connexions infinitésimales dans un espace fibré differentiable, Colloque de Topologie, Bruxelles, CBRM.Google Scholar
Faran, J. (1998) A synthetic Frobenius Theorem, Journal of Pure and Applied Algebra 128, 11–32.CrossRefGoogle Scholar
Felix, Y. and Lavendhomme, R. (1990) On DeRham's theorem in synthetic differential geometry, Journal of Pure and Applied Algebra 65, 21–31.CrossRefGoogle Scholar
Frölicher, A. and Kriegl, A. (1988) Linear Spaces and Differentiation Theory, Wiley-Interscience.Google Scholar
Grandis, M. (2001) Finite sets and symmetric simplicial sets, Theory and Applications of Categories 8, 244–252.Google Scholar
Grandis, M. and Mauri, L. (2003) Cubical sets and their site, Theory and Applications of Categories 11, 186–211.Google Scholar
Greub, W. (1978) Multilinear Algebra (2nd edition), Springer Universitext.CrossRefGoogle Scholar
Grothendieck, A. (1967) Élements de Géométrie Algébrique IV, Étude locale de schémas et des morphismes de schémas, part 4, Publ. Math. 32, Bures-sur-Yvette.
Helgason, S. (1962) Differential Geometry and Symmetric Spaces, Academic Press.Google Scholar
Hilton, P. J. and Wylie, S. (1960) Homology Theory, Cambridge University Press.CrossRefGoogle Scholar
Johnstone, P. T. (1977) Topos Theory, Academic Press.Google Scholar
Johnstone, P. T. (2002) Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides, Vols 43, 44, Oxford University Press.Google Scholar
Joyal, A. Structures Infinitésimales, Lecture, 30 March 1979 (handwritten notes by G. Reyes).
Joyal, A. and Moerdijk, I. (1994) A completeness theorem for open maps, Journal of Pure and Applied Logic 70, 51–58.CrossRefGoogle Scholar
Klein, F. (1926) Vorlesungen über höhere Geometrie, Springer Verlag.Google Scholar
Kobayashi, S. and Nomizu, K. (1963) Foundations of Differential Geometry, Wiley New York.Google Scholar
Kock, A. (1977) A simple axiomatics for differentiation, Mathematica Scandinavica 40, 183–193.CrossRefGoogle Scholar
Kock, A. (ed.) (1979) Topos Theoretic Methods in Geometry, Aarhus Mathematical Institute Various Publications Series No. 30.
Kock, A. (1980) Formal manifolds and synthetic theory of jet bundles, Cahiers de Topologie et Géométrie Différentielle 21, 227–246.Google Scholar
Kock, A. (1981/2006) Synthetic Differential Geometry, LMS 51, Cambridge University Press (2nd edition, LMS 333, Cambridge University Press).Google Scholar
Kock, A. (1982a) Differential forms with values in groups, Bulletin of the Australian Mathematical Society 25, 357–386.CrossRefGoogle Scholar
Kock, A. (1982b) The algebraic theory of moving frames, Cahiers de Topologie et Géométrie Différentielle 23, 347–362.Google Scholar
Kock, A. (ed.) (1983a) Category Theoretic Methods in Geometry, Proceedings Aarhus 1983, Aarhus Mathematical Institute Various Publications Series No. 35.
Kock, A. (1983b) Some problems and results in synthetic functional analysis, in Kock, A. (ed.) Category Theoretic Methods in Geometry, Proceedings Aarhus 1983, Aarhus Mathematical Institute Various Publications Series No. 35, pp. 168–191.Google Scholar
Kock, A. (1984) A combinatorial theory of connections, in Gray, J. (ed.) Mathematical Applications of Category Theory, Proceedings 1983, AMS Contemporary Mathematics Vol. 30, pp. 132–144.CrossRefGoogle Scholar
Kock, A. (1985) Combinatorics of non-holonomous jets, Czechoslovak Mathematical Journal 35, 419–428.Google Scholar
Kock, A. (1986a) Convenient vector spaces embed into the Cahiers topos, Cahiers de Topologie et Géométrie Différentielle Catégoriques 27, 3–17. Corrections in Kock and Reyes (1987).Google Scholar
Kock, A. (1986b) Introduction to synthetic differential geometry, and a synthetic theory of dislocations, in Lawvere, F. W. and Schanuel, S. (eds), Categories in Continuum Physics, Proceedings Buffalo 1982, Springer Lecture Notes Vol. 1174.CrossRefGoogle Scholar
Kock, A. (1989) On the integration theorem for Lie groupoids, Czechoslovak Mathematical Journal 39, 423–431.Google Scholar
Kock, A. (1996) Combinatorics of curvature, and the Bianchi Identity, Theory and Applications of Categories 2, 69–89.Google Scholar
Kock, A. (1998) Geometric construction of the Levi–Civita parallelism, Theory and Applications of Categories 4, 195–207.Google Scholar
Kock, A. (2000) Differential forms as infinitesimal cochains, Journal of Pure and Applied Algebra 154, 257–264.CrossRefGoogle Scholar
Kock, A. (2001) Infinitesimal aspects of the Laplace operator, Theory and Applications of Categories 9, 1–16.Google Scholar
Kock, A. (2003) First neighbourhood of the diagonal, and geometric distributions, Universitatis Iagellonicae Acta Mathematica 41, 307–318.Google Scholar
Kock, A. (2004) A geometric theory of harmonic and semi-conformal maps, Central European Journal of Mathematics 2, 708–724.CrossRefGoogle Scholar
Kock, A. (2006) Connections and path connections in groupoids, Aarhus Mathematical Institute Preprint No. 10. http://www.imf.au.dk/publs?id=619.
Kock, A. (2007a) Envelopes – notion and definiteness, Beiträge zur Algebra und Geometrie 48, 345–350.Google Scholar
Kock, A. (2007b) Principal bundles, groupoids, and connections, in Kubarski, J., T.Pradines, , Rybicki, T. and Wolak, R. (eds), Geometry and Topology of Manifolds (The Mathematical Legacy of Charles Ehresmann), Banach Center Publications 76, pp. 185–200.CrossRefGoogle Scholar
Kock, A. (2007c) Infinitesimal cubical structure, and higher connections, arXiv:0705.4406[math.CT]
Kock, A. (2008) Combinatorial differential forms – cubical formulation, Applied Categorical Structures DOI 10.1007/s10485-008-9143–6.Google Scholar
Kock, A. and Lavendhomme, R. (1984) Strong infinitesimal linearity, with applications to strong difference and affine connections, Cahiers de Topologie et Géometrie Differentielle Catégoriques 25, 311–324.Google Scholar
Kock, A. and Reyes, G. E. (1979a) Manifolds in formal differential geometry, in Applications of Sheaves, Proceedings Durham 1977, Springer Lecture Notes in Mathematics Vol. 753.CrossRefGoogle Scholar
Kock, A. and Reyes, G. E. (1979b) Connections in formal differential geometry, in Topos Theoretic Methods in Geometry, Aarhus Mathematical Institute Various Publications Series No. 30.Google Scholar
Kock, A. and Reyes, G. E. (1987) Corrigendum and addenda to “Convenient vector spaces embed”, Cahiers de Topologie et Géométrie Différentielle Catégoriques 28, 99–110.Google Scholar
Kock, A. and Reyes, G. E. (2003) Some calculus with extensive quantities: wave equation, Theory and Applications of Categories 11, 321–336.Google Scholar
Kock, A. and Reyes, G. E. (2006) Distributions and heat equation in SDG, Cahiers de Topologie et Géométrie Différentielle Catégoriques 47, 2–28.Google Scholar
Kock, A., Reyes, G. E. and Veit, B. (1979/80) Forms and integration in synthetic differential geometry, Aarhus Preprint Series No. 31.
Kolar, I. (1982) On the second tangent bundle and generalized Lie derivatives, Tensor N.S. 38, 98–102.Google Scholar
Kriegl, A. and Michor, P. (1997) The Convenient Setting of Global Analysis, American Mathematical Society.CrossRefGoogle Scholar
Kumpera, A. and Spencer, D. (1973) Lie Equations. Volume I: General Theory, Annals of Mathematics Studies Number 73, Princeton University Press.CrossRefGoogle Scholar
Lambek, J. and Scott, P. (1986) Introduction to Higher Order Categorical Logic, Cambridge Studies in Advanced Mathematics 7, Cambridge University Press.Google Scholar
Lavendhomme, R. (1987) Lecons de géométrie différentielle synthétique naïve, CIACO, Louvain-la-Neuve.Google Scholar
Lavendhomme, R. (1994) Algèbres de Lie et groupes microlinéaires, Cahiers de Topologie et Géométrie Différentielle Catégoriques 35, 29–47.Google Scholar
Lavendhomme, R. (1996) Basic Concepts of Synthetic Differential Geometry, Kluwer Academic Publishers.CrossRefGoogle Scholar
Lawvere, F. W. (1979) Categorical dynamics, in Topos Theoretic Methods in Geometry, Aarhus Mathematical Institute Various Publications Series No. 30, pp. 1–28.Google Scholar
Lawvere, F. W. (1998) Outline of Synthetic Differential Geometry, 14 pp. Unpublished manuscript, www.acsu.buffalo.edu.wlawvere/downloadlist.html.
Lawvere, F. W. (2000) Comments on the development of topos theory, in Bier, J.-P. (ed.), Development of Mathematics 1950–2000, Birkhäuser Verlag, Basel, pp. 715–734.CrossRefGoogle Scholar
Lawvere, F. W. (2002) Categorical algebra for continuum micro physics, Journal of Pure and Applied Algebra 175, 267–287.CrossRefGoogle Scholar
Lawvere, F. W., Maurer, C. and Wraith, G. C. (eds) (1975) Model Theory and Topoi, Springer Lecture Notes in Mathematics Vol. 445.CrossRef
Libermann, P. (1971) Sur les prolongements des fibrés principaux et des groupoïdes différentiables banachiques, in Analyse Globale, Séminaire de Mathématiques Supérieures, Les Presses de l'Université de Montréal, pp. 7–108.Google Scholar
Lie, S. (1896/1977) Geometrie der Berührungstransformationen, Leipzig 1896 (reprinted by Chelsea Publishing Company, 1977).Google Scholar
Mac Lane, S. (1971) Categories for the Working Mathematician, Springer Graduate Texts in Mathematics No. 5, Springer Verlag.CrossRefGoogle Scholar
Mac Lane, S. and Moerdijk, I. (1992) Sheaves in Geometry and Logic, Springer Universitext.CrossRefGoogle Scholar
Mackenzie, K. C. H. (1987) Lie Groupoids and Lie Algebras in Differential Geometry, LMS 124, Cambridge University Press.CrossRefGoogle Scholar
Mackenzie, K. C. H. (1995) Lie algebroids and Lie pseudoalgebras, Bulletin of the London Mathematical Society 27, 97–147.CrossRefGoogle Scholar
Madsen, I. and Tornehave, J. (1997) From Calculus to Cohomology, Cambridge University Press.Google Scholar
Malgrange, B. (1972) Equations de Lie, I, Journal of Differential Geometry 6, 503–522.CrossRefGoogle Scholar
McLarty, C. (1983) Local, and some global, results in synthetic differential geometry, in Category Theoretic Methods in Geometry, Proceedings Aarhus 1983, Aarhus Mathematical Institute Various Publications Series No. 35, pp. 226–256.
McLarty, C. (1995) Elementary Categories, Elementary Toposes, Oxford Logic Guides 21, Clarendon Press, Oxford.Google Scholar
Meloni, G.-C. and Rogora, E. (1988) Global and infinitesimal observables, in Borceux, F. (ed.), Categorical Algebra and its Applications, Proceedings Louvainla-Neuve 1987, Springer Lecture Notes 1348, pp. 270–279.CrossRefGoogle Scholar
Minguez Herrero, C. (1988) Wedge products of forms in synthetic differential geometry, Cahiers de Topologie et Géométrie Différentielle Catégoriques 29, 59–66.Google Scholar
Moerdijk, I. and Reyes, G. E. (1991) Models for Smooth Infinitesimal Analysis, Springer.CrossRefGoogle Scholar
Mumford, D. (1965/1988) Introduction to algebraic geometry (Preliminary version of first three chapters), Harvard notes 1965, (reprinted in Mumford, D., The Red Book of Varieties and Schemes, Springer Lecture Notes in Mathematics 1358, 1988).
Nelson, E. (1967) Tensor Analysis, Princeton University Press.Google Scholar
Nishimura, H. (1997) Theory of microcubes, International Journal of Theoretical Physics 36, 1099–1131.CrossRefGoogle Scholar
Nishimura, H. (1998) Nonlinear connections in synthetic differential geometry, Journal of Pure and Applied Algebra 131, 49–77.CrossRefGoogle Scholar
Nishimura, H. (2004) Higher-order preconnections in synthetic differential geometry of jet bundles, Beiträge zur Algebra und Geometrie 45, 677–696.Google Scholar
Nishimura, H. (2007) The Lie algebra of the group of bisections, Far East Journal of Mathematical Sciences 24, 329–342.Google Scholar
Nishimura, H. (2008a) The Frölicher–Nijenhuis Calculus in Synthetic Differential Geometry, arXiv:0810.5492[math.DG]
Nishimura, H. (2008b) Curvature in synthetic differential geometry of groupoids, Beiträge zur Algebra und Geometrie 49, 369–381.Google Scholar
Noll, W. (1967) Materially uniform simple bodies with inhomogeneities, Archive for Rational Mechanics and Analysis 27, 1–32.CrossRefGoogle Scholar
Palais, R.et al. (1965) Seminar on the Atiyah–Singer Index Theorem, Annals of Mathematical Studies 57.Google Scholar
Penon, J. (1985) De l'infinitésimal au local, These de Doctorat d'Etat, Paris 7.
Pradines, J. (1967) Theorie de Lie pour les groupoides differentiables, C. R. Academy Paris 266, 245–248.Google Scholar
Reyes, G. and Wraith, G. C. (1978) A note on tangent bundles in a category with a ring object, Mathematica Scandinavica 42, 53–63.CrossRefGoogle Scholar
Saunders, D. J. (1989) The Geometry of Jet Bundles, LMS 142, Cambridge University Press.CrossRefGoogle Scholar
Schreiber, U. and Waldorf, K. (2008), Smooth Functors vs. Differential Forms, arXiv:0802.0663v2[mathDG]
Serre, J.-P. (1965) Lie Algebras and Lie Groups, Benjamin Publishing Company.Google Scholar
Spivak, M. (1979) A Comprehensive Introduction to Differential Geometry (Vols 15), Publish or Perish, Inc.Google Scholar
Virsik, J. (1971) On the holonomity of higher order connections, Cahiers de Topologie et Géométrie Différentielle 12, 197–212.Google Scholar
White, J. E. (1982) The Method of Iterated Tangents with Applications to Local Riemannian Geometry, Pitman Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Anders Kock, Aarhus Universitet, Denmark
  • Book: Synthetic Geometry of Manifolds
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691690.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Anders Kock, Aarhus Universitet, Denmark
  • Book: Synthetic Geometry of Manifolds
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691690.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Anders Kock, Aarhus Universitet, Denmark
  • Book: Synthetic Geometry of Manifolds
  • Online publication: 05 May 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511691690.011
Available formats
×