Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T01:18:16.620Z Has data issue: false hasContentIssue false

Chapter 2 - Basic notions: the self-sustained oscillator and its phase

Published online by Cambridge University Press:  06 July 2010

Arkady Pikovsky
Affiliation:
Universität Potsdam, Germany
Michael Rosenblum
Affiliation:
Universität Potsdam, Germany
Jürgen Kurths
Affiliation:
Universität Potsdam, Germany
Get access

Summary

In this chapter we specify in more detail the notion of self-sustained oscillators that was sketched in the Introduction. We argue that such systems are ubiquitous in nature and engineering, and introduce their universal description in state space and their universal image – the limit cycle. Next, we discuss the notion and the properties of the phase, the variable that is of primary importance in the context of synchronization phenomena. Finally, we analyze several simple examples of self-sustained systems, as well as counter-examples. In this way we shall illustrate the features that make self-sustained oscillators distinct from forced and conservative systems; in the following chapters we will show that exactly these features allow synchronization to occur. Our presentation is not a systematic and complete introduction to the theory of self-sustained oscillation: we dwell only on the main aspects that are important for understanding synchronization phenomena.

The notion of self-sustained oscillators was introduced by Andronov and Vitt [Andronov et al. 1937]. Although Rayleigh had already distinguished between maintained and forced oscillations, and H. Poincare had introduced the notion of the limit cycle, it was Andronov and Vitt and their disciples who combined rigorous mathematical methods with physical ideas. Self-sustained oscillators are a subset of the wider class of dynamical systems. The latter notion implies that we are dealing with a deterministic motion, i.e., if we know the state of a system at a certain instant in time then we can unambiguously determine its state in the future.

Type
Chapter
Information
Synchronization
A Universal Concept in Nonlinear Sciences
, pp. 27 - 44
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×