Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T10:20:44.230Z Has data issue: false hasContentIssue false

3 - Two especially useful estimation tools

Published online by Cambridge University Press:  03 February 2010

Steve Selvin
Affiliation:
University of California, Berkeley
Get access

Summary

Estimates of parameters based on statistical models and their evaluation are major components of statistical methods. The following outlines two techniques that are key to statistical estimation in general, namely maximum likelihood estimation and the derivation of the statistical properties of analytic functions. These somewhat theoretical topics are not critical to understanding the application of survival analysis methods, but provide valuable insight into the origins of parameter estimates and the variances of their distributions.

Maximum likelihood estimation

Maximum likelihood estimation is used in the vast majority of statistical analyses to determine values for the parameters of models describing the relationships within sampled data. The complexity of this technique lies in the technical application and not its underlying principle. Maximum likelihood estimation is conceptually simple. A small example introduces the fundamental considerations at the heart of the maximum likelihood estimation process.

Suppose that a thumbtack tossed in the air has an unknown probability of landing with the point up (denoted p). Furthermore, three tacks are tossed and one lands point up and the other two land point down. The probability of this result is 3p(1 – p)2. When two values are proposed as an estimate of p, it is not hard to decide the most likely to have produced the observed result (one up and two down) and therefore is the better estimate of the unknown probability p. For the example, the likelihood that one up-tack occurs out of three tossed when p = 0.2 is 3(0.2)(0.8)2 = 0.384 and the probability of the same outcome when p = 0.8 is 3(0.8)(0.2)2 = 0.096.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×