Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Introduction and history
- 2 Supercontinuum generation in microstructure fibers – a historical note
- 3 Nonlinear fibre optics overview
- 4 Fibre supercontinuum generation overview
- 5 Silica fibres for supercontinuum generation
- 6 Supercontinuum generation and nonlinearity in soft glass fibres
- 7 Increasing the blue-shift of a picosecond pumped supercontinuum
- 8 Continuous wave supercontinuum generation
- 9 Theory of supercontinuum and interaction of solitons with dispersive waves
- 10 Interaction of four-wave mixing and stimulated Raman scattering in optical fibers
- 11 Nonlinear optics in emerging waveguides: revised fundamentals and implications
- 12 Supercontinuum generation in dispersion-varying fibers
- 13 Supercontinuum generation in chalcogenide glass waveguides
- 14 Supercontinuum generation for carrier-envelope phase stabilization of mode-locked lasers
- 15 Biophotonics applications of supercontinuum generation
- 16 Fiber sources of tailored supercontinuum in nonlinear microspectroscopy and imaging
- Index
13 - Supercontinuum generation in chalcogenide glass waveguides
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- List of contributors
- Preface
- 1 Introduction and history
- 2 Supercontinuum generation in microstructure fibers – a historical note
- 3 Nonlinear fibre optics overview
- 4 Fibre supercontinuum generation overview
- 5 Silica fibres for supercontinuum generation
- 6 Supercontinuum generation and nonlinearity in soft glass fibres
- 7 Increasing the blue-shift of a picosecond pumped supercontinuum
- 8 Continuous wave supercontinuum generation
- 9 Theory of supercontinuum and interaction of solitons with dispersive waves
- 10 Interaction of four-wave mixing and stimulated Raman scattering in optical fibers
- 11 Nonlinear optics in emerging waveguides: revised fundamentals and implications
- 12 Supercontinuum generation in dispersion-varying fibers
- 13 Supercontinuum generation in chalcogenide glass waveguides
- 14 Supercontinuum generation for carrier-envelope phase stabilization of mode-locked lasers
- 15 Biophotonics applications of supercontinuum generation
- 16 Fiber sources of tailored supercontinuum in nonlinear microspectroscopy and imaging
- Index
Summary
Introduction
Supercontinuum (SC) generation, the creation of broadband spectral components from an intense light pulse passing through a nonlinear medium, is of great theoretical interest as well as having numerous applications in optical frequency metrology, bio-imaging and spectroscopy (Dudley et al., 2006). In particular, the demonstration of efficient SC generation in a silica photonic crystal fibre (PCF) and silica fibre tapers using a Ti:Sapphire laser (Birks et al., 2000, Ranka et al., 2000) had a striking impact on this research field. The advent of this new class of waveguide, capable of engineered dispersion and strong confinement of light, facilitated research on the fundamental study of the evolution of ultra-fast pulses in highly nonlinear wave-guides, as well as the development of practical broadband light sources using the proper combination of fibres and laser pulses. Although the successful demonstration of ultra-broadband light generation often spanning more than an octave has been made in silica fibre, the small Kerr nonlinear coefficient of silica still limits its practicality. The ideal SC light source would use a compact, low power pulsed laser. This goal has motivated the study of SC generation in waveguides with higher nonlinear coefficients and lower energy thresholds or decreased device length to initiate the nonlinear process. Several approaches based on this idea have been reported utilising highly nonlinear material in a fibre geometry such as lead-silicate, bismuth and chalcogenide fibres (Brambilla et al., 2005, Leong et al., 2006, Mägi et al., 2007), and in a planar waveguide geometry including silicon (Boyraz et al., 2004), AlGaAs (Siviloglou et al., 2006) and chalcogenide waveguides (Psaila et al., 2007, Lamont et al., 2008).
- Type
- Chapter
- Information
- Supercontinuum Generation in Optical Fibers , pp. 306 - 333Publisher: Cambridge University PressPrint publication year: 2010