Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T02:48:22.008Z Has data issue: false hasContentIssue false

8 - Continuous wave supercontinuum generation

Published online by Cambridge University Press:  06 July 2010

J. M. Dudley
Affiliation:
Université de Franche-Comté
J. R. Taylor
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Introduction

It is perhaps not surprising that using extremely high power and short pulse duration pump sources leads to dramatic nonlinear processes in optical fibres; in contrast, the generation of a supercontinuum from a continuous pump wave of relatively meagre power is at first sight, astounding. Yet supercontinua spanning over 1000 nm have been generated with pump powers of a few tens of watts – orders of magnitude lower than pulse pumped systems.

The key to continuous wave (CW) supercontinuum generation is the utilisation of modulation instability (MI). This is inherent to any anomalously dispersive, nonlinear medium, and has been observed in a wide range of systems. This instability can enable the creation of the extremes of peak power and pulse duration necessary for dramatic nonlinear processes to occur, even from very low power CW pump lasers. But although MI from CW pump lasers was observed in the 1980s by Itoh et al. (1989), other factors required for efficient continuum generation were missing, causing another decade to pass before such results were obtained.

A full review of experimental results will be presented later, but for reference, some examples of continuous wave supercontinua are shown in Fig. 8.1, which illustrate the high spectral power and the spectral smoothness and flatness which are characteristic of CW continuum generation.

Although significantly different from the physical mechanisms involved in ultra-short – femtosecond based – supercontinuum generation, the basic physical processes underpinning CW continuum generation are the same as for longer pump pulses (greater than a few picoseconds) and the observations and conclusions developed in the 1980s surrounding these type of sources apply to the CW regime.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×