Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T02:39:40.042Z Has data issue: false hasContentIssue false

5 - Biological factors influencing suicidal behavior in adolescents

Published online by Cambridge University Press:  04 December 2009

Alan Apter
Affiliation:
Professor of Psychiatry, Sackler School of Medicine, University of Tel-Aviv Medical School; Chairman, Dept. of Child and Adolescent Psychiatry, Schneider Children's Medical Center of Israel, 14 Kaplan St. Petah Tikva, Israel 49202 e-mail: [email protected]
Robert A. King
Affiliation:
Yale University, Connecticut
Alan Apter
Affiliation:
Tel-Aviv University
Get access

Summary

The dearth of biological studies of child and adolescent suicide necessitates that this chapter reviews the general situation, pointing out those areas that have the most relevance to adolescent suicidal behavior. The emphasis of this review also reflects the author's view that suicidal behavior in the young is strongly related to aggression and impulsivity (Oquendo and Mann, 2000; van Praag, 2000).

Serotonin and suicide

Psychopathology and suicide

One of the main obstacles to reducing the suicide rate in adolescents is a relative inability to identify youth who are at risk of suicide attempts and completions. A related problem is our lack of understanding of the mechanisms that predispose adolescents to suicidal behavior. One consistent theme in the literature, however, is that suicide and suicidal behavior are linked to a wide variety of psychiatric disorders, including affective illness, substance abuse, conduct disorder, and schizophrenia (Brent et al., 1993). Over 90% of adolescent and adult suicide victims appear to have at least one major psychiatric disorder (Brent, 1989). However, since the majority of patients with psychiatric disorders do not commit or attempt suicide, it appears that a psychiatric disorder may be a necessary, but not a sufficient, risk factor for suicide. Therefore, one of the most pressing clinical research areas in the field of adolescent suicidality is to identify those factors, other than psychiatric disorder, that predispose to suicide.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbar, M., Courted, P., Amadeo, S., Caer, L. S., Mallet, J., Baldy-Moulinier, M., Castlenau, D., and Malefosse, A. (1995). Bacow, L. S.Suicidal behaviors and the tryptophan hydroxylase gene. Archives of General Psychiatry, 52, 846–849Google Scholar
Agren, H. (1980). Symptom patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cerebrospinal fluid: l. General patterns. Psychological Research, 3, 211–223Google Scholar
Agren, H. (1983). Life at risk: markers of suicidality in depression. Psychiatry Development, 1(1), 87–103Google Scholar
Almeida-Montes, L. G., Valles-Sanchez, V., Moreno-Aguilar, J., Chavez-Balderas, R. A., Garcia-Marin, J. A., Cortes-Sotres, J. F., and Heinze-Martin, G. (2000). Relation of serum cholesterol, lipid, serotonin and tryptophan levels to severity of depression and to suicide attempts. Journal of Psychiatry and Neuroscience, 25(4), 371–377Google Scholar
Anderson, G. M., Segman, R. H., and King, R. A. (1995). Serotonin and suicidality: II. Acute neurobiological effects. Israel Journal of Psychiatry and Related Science, 32(1), 44–50Google Scholar
Apter, H. M., Praag, S., Sevy, M., Korn, M., and Brown, S. (1990). Interrelationships among anxiety, aggression, impulsiveness and mood: a serotonergically linked cluster?Psychological Research, 32, 191–199Google Scholar
Apter, A., Kotler, M., Sevy, S., Plutchik, R., Brown, S., Foster, H., Hillbrand, M., Korn, M., and Praag, H. (1991). Correlates of risk of suicide in violent and nonviolent psychiatric patients. American Journal of Psychiatry, 148(7), 883–887Google Scholar
Apter, A., Plutchik, R., and Praag, H. M. (1993). Anxiety, impulsivity and depressed mood in relation to suicide and violent behavior. Acta Psychiatrica Scandinavica, 87(1), 1–5Google Scholar
Apter, A., Gothelf, D., Orbach, I., Har-Even, D., Weizman, R., and Tyano, S. (1995). Correlation of suicidal and violent behavior in different diagnostic categories in hospitalized adolescent patients. Journal of the American Academy of Child and Adolescent Psychiatry, 34(7), 912–918CrossRefGoogle Scholar
Arango, V., Soreni, N., Don-Tufeled, O., Weizman, A., Karp, L., and Gavish, M. (1997). Decreased peripheral-type benzodiazepine receptor in suicidal adolescent in-patients. Paper presented at the WPA Regional Conference, Jerusalem. World Psychiatric Association, June 1997
Arango, V., Ernsberger, P., Sved, A. F., and Mann, J. J. (1993). Quantitative autoradiography of alpha 1 and alpha 2-adrenergic receptors in the cerebral cortex of controls and suicide victims. Brain Research, 630(1–2), 271–282CrossRefGoogle Scholar
Arango, V., Underwood, M. D., Gubbi, A. V., and Mann, J. J. (1995). Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Research, 688(1–2), 121–133CrossRefGoogle Scholar
Arango, V., Underwood, M. D., Pauler, D. K., Kass, R. E., and Mann, J. J. (1996). Differential age related loss of pigmented locus coerelus neurones in suicides, alcoholics and alcoholic suicides. Alcoholism, Clinical and Experimental Research, 20(7), 1141–1147Google Scholar
Arora, R. C., and Melzer, H. Y. (1993). Serotonin 2 receptor binding in blood platelets of schizophrenic patients. Psychological Research, 47(2), 111–119Google Scholar
Arranz, B., Blennow, K., Eriksson, A., Mansson, J. E., and Marcusson, J. (1997). Serotonergic, noradrenergic and dopaminergic measures in suicide brains. Biological Psychiatry, 41(10), 1000–1009CrossRefGoogle Scholar
Asberg, M., Traskman, L., and Thoren, P. (1976). 5-HIAA in the cerebrospinal fluid: a biochemical suicide predictor?Archives of General Psychiatry, 33, 1193–1197Google Scholar
Audenaert, K., Van-Laere, K., Dumont, F., Slegers, G., Mertens, J., van-Heeringen, C., and Dierckx, R. A. (2001). Decreased frontal serotonin 5-HT2a receptor binding index in deliberate self-harm patients. European Journal of Nuclear Medicine, 28(2), 175–182Google Scholar
Banki, C. M., and Arato, M. (1983). Amine metabolites, neuroendocrine findings and personality dimensions as correlates of suicidal behavior. Psychological Research, 10, 253–261Google Scholar
Bellivier, F., Leboyer, M., Courtet, P., Buresi, C., Beaufils, B., Samolyk, D., and Allilaire, J. F. (1998). Association between the tryptophan hydroxylase gene and manic-depressive illness. Archives of General Psychiatry, 55, 33–37CrossRefGoogle Scholar
Biegon, A., and Fieldlust, S. (1992). Reduced tyrosine hydroxylase immunoreactivity in the locus coeruleus of suicide victims. Synapse, 10, 79–82Google Scholar
Bioulac, B., Benezech, M., Renaud, B., Noel, B., and Roche, D. (1980). Serotonergic functions in the 47, XYY syndrome. Biological Psychiatry, 15, 917–923Google Scholar
Bondy, B., Erfuth, A., Jonge, S., Krüger, M., and Meyer, H. (2000). Possible association of the short allele of the serotonin transporter promoter gene polymorphism (5-HTTLPR) with violent suicide. Molecular Psychiatry, 5, 193–195Google Scholar
Botchin, M. B., Kaplan, J. R., Manuck, S. B., and Mann, J. J. (1993). Low versus high prolactin responders to fenfluramine challenge: marker of behavioral differences in adult cynomolgus macaques. Neuropsychopharmacology, 9(2), 93–99Google Scholar
Brent, D. A. (1989). The psychological autopsy: methodological considerations for the study of adolescent suicide and life threatening behavior. Suicide and Life-Threatening Behavior, 19, 43–47CrossRefGoogle Scholar
Brent, D. A. (1997). Genetics of suicide [unpublished lecture]. WHO suicide meeting, Bern, Switzerland
Brent, D. A., Perper, J. A., Moritz, G., Allma, C., Friend, A., Roth, D., Schweers, J., Balach, L., and Baugher, M. (1993). Psychiatric risk factors for adolescent suicide: a case control study. Journal of the American Academy of Child and Adolescent Psychiatry, 32, 521–529CrossRefGoogle Scholar
Brent, D. A., Perper, J. A., Moritz, G., Allma, C., Friend, A., Roth, D., Schweers, J., Balach, L., and Baugher, M. (1994). Psychiatric risk factors for adolescent suicide: a case control study. Acta Psychiatrica Scandinavica, 89, 52–58CrossRefGoogle Scholar
Brown, G. L., Goodwin, F. K., Ballenger, J. C., Goyer, P. F., and Major, L. F. (1979). Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Research, 1, 131–139Google Scholar
Brown, G. L.Ebert, M. H., Goyer, P. F., Jimerson, D. C., Klein, W. J., Bunney, W. E., and Goodwin, F. K. (1982a). Aggression, suicide and serotonin: relationships to CSF amine metabolites. American Journal of Psychiatry, 139, 741–746Google Scholar
Brown, G. I.Goodwin, F. K., and Bunney, W. E. Jr. (1982b). Human aggression and suicide: their relationship to neuropsychiatric diagnoses and serotonin metabolism. Advances in Biochemistry and Psychopharmacology, 34, 287–307Google Scholar
Buchsbaum, M. S.Coursey, R. D., and Murphy, D. L. (1976). The biochemical high risk paradigm: behavioral and familial correlates of low platelet monoamine oxidase activity. Science, 194, 339–341Google Scholar
Buresi, C., Courtet, P., Leboyer, M., Feingold, J., and Malafosse, A. (1997). Association between suicide attempt and the tryptophan hydroxylase gene. American Journal of Human Genetics, 61 (Suppl), 270Google Scholar
Chen, Z., Petto, R., Collins, R., McMahon, S., Lu, J., and Li, W. (1991). Serum cholesterol concentration and coronary heart disease in population with low cholesterol concentrations. British Medical Journal, 303, 276–282Google Scholar
Coccaro, E. F. (1989). Central serotonin and impulsive aggression. British Journal of Psychiatry, 155 (Suppl), 52–62Google Scholar
Coccaro, E. F., Silverman, J. M., Klar, H. M., Horvath, T. B., and Siever, L. J. (1994). Familial correlates of reduced central serotonergic system function in patients with personality disorders. Archives of General Psychiatry, 51(4), 318–324Google Scholar
Coccaro, E. F., Siever, L., Howard, M., Klar, H., Maurer, G., Cochrane, K., Cooper, T., Mohs, R. C., and Davis, K. (1989). Serotonergic studies in patients with affective and personality disorders. Archives of General Psychiatry, 46, 587–599CrossRefGoogle Scholar
Cook, E. H., Lindgren, V., Leventhal, B. L., Courchesne, R., Lincoln, A., Shulman, C., and Courchesne, C. (1997). Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. American Journal of Human Genetics, 60, 928–934Google Scholar
Correa, H., Duval, F., Mokrani, M., Bailey, P., Tremeau, F., Staner, L., Diep, T. S., Hode, Y., Crocq, M. A., and Macher, J. P. (2000). Prolactin response to d-fenfluramine and suicidal behavior in depressed patients. Psychiatry Research, 93(3), 189–199CrossRefGoogle Scholar
Davis, B. A., Yu, P. H., Boulton, A. A., Wormith, J. S., and Addington, D. (1983). Correlative relationship between biochemical activity and aggressive behaviour. Progress in Neuropsychopharmacology and Biological Psychiatry, 7(4–6), 529–535Google Scholar
Parmentier, F., Mauger, J. M., Lowther, S., Crompton, M. R., Katona, C. L., and Horton, R. W. (1997). Brain alpha adreno receptors in depressed suicide. Brain Research, 757(1), 60–68Google Scholar
Di Bella, D., Catalano, M., Balling, U., Smeraldi, E., and Lesch, K. P. (1996). Systematic screening for mutations in the coding region of the human serotonin transporter (5-HTT) gene using PCR and DGGE. American Journal of Medical Genetics, 67, 541–5453.0.CO;2-K>CrossRefGoogle Scholar
Drugan, R. C., Basile, A. S., Crawly, J. N., Paul, S. M., and Skolnick, P. (1988). Characterization of stress-induced alteration in 3H Ro 5-4864 binding to peripheral benzodiazepine receptors in rat heart and kidney. Pharmacology, Biochemistry and Behavior, 30, 1015–1020CrossRefGoogle Scholar
Du, L., Faludi, G., Palkovitz, M., Demeter, E., Bakish Dlapierre, Y. D., Lapierre, Y. D., Sotonyi, P., and Hrdina, P. D. (1999). Frequency of long allele in serotonin transporter gene is increased in depressed suicide victims. Biological Psychiatry, 46, 196–201Google Scholar
Frick, M. H., Elo, O., and Haapa, K. (1987). Helsinki heart study primary prevention trial with gernfibrozil in middle aged men with dyslipedemia. New England Journal of Medicine, 317, 1237–1245CrossRefGoogle Scholar
Furlong, R. A., Ho, L., Walsh, C., Rubinsztein, A., Jain, S., Paykel, E. S., and Rubinsztein, D. C. (1998a). Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. American Journal of Medical Genetics, 81, 58–63Google Scholar
Furlong, R. A., Ho, L., Rubinsztein, J. S., Walsh, C., Paykel, E. S., and Rubinsztein, D. C. (1998b). No association of the tryptophan hydroxylase gene with bipolar affective disorder, unipolar affective disorder, or suicidal behavior in major affective disorder. American Journal of Medical Genetics, 81, 245–247Google Scholar
Garrison, C. Z., Jackson, K. L., Addy, C. L., McKeowan, R. E., and Waller, M. L. (1991). Suicidal behaviors in young adolescents. American Journal of Epidemiology, 133, 1005–1014Google Scholar
Geijer, T., Frisch, A., Persson, M. L., Wasserman, D., Rockah, R., Michaelovsky, E., Apter, A., Jonsson, E., Nothen, M. M., and Weizman, A. (2000). Search for association between suicide attempt and serotonergic polymorphisms. Psychiatry and Genetics, 10, 19–26CrossRefGoogle Scholar
Gelernter, J., Pakstis, A. J., and Kidd, K. K. (1997). Linkage mapping of serotonin transporter protein gene SLC6A4 on chromosome 17. Human Genetics, 95, 677–680Google Scholar
Glueck, C. J., Kutler, F. E., Hammer, T., Rodriguez, R., Sosa, F., Sieve-Smith, L., and Morrison, J. A. (1994). Hypocholesterolemia, hyperglyceridemia, suicide and suicide ideation in children hospitalized for psychiatric diseases. Pediatric Research, 35, 602–610Google Scholar
Gollier, J. A., Marzuk, P. M., Leon, A. C., Weiner, C., and Tardiff, K. (1995). Low serum cholesterol levels and attempted suicide. American Journal of Psychiatry, 152, 419–423CrossRefGoogle Scholar
Gould, M. S., Shaffer, D., and Fisher, P. (1992). The clinical prediction of adolescent suicide. In Maris, R. W. (ed.) Assessment and Prediction of Suicide. New York, NY: Guilford Publications
Graae, F., Tenke, C., Bruder, G., Rotheram, M. J., Piacentini, J., Castro-Blanco, D., Leite, P., and Towey, J. (1996). Abnormality of EEG alpha asymmetry in female adolescent suicide attempters. Biological Psychiatry, 40(8), 706–713CrossRefGoogle Scholar
Hallikainen, T., Saito, T., Lachman, H. M., Volavka, J., Pohjalainen, T., Ryynanen, O. P., Kauhanen, J., Syvalahti, E., Hietala, J., and Tiihonen, J. (1999). Association between low activity serotonin transporter genotype and early onset alcoholism with habitual impulsive violent behavior. Molecular Psychiatry, 4, 385–388Google Scholar
Halperin, J. M., Newcorn, J. H., Schwarz, S. T., Sharma, V., Siever, L. J., Koda, V. H., and Gabriel, S. (1997). Age related changes in the association between serotonergic function and aggression in boys with ADHD. Biological Psychiatry, 41(6), 682–689Google Scholar
Heilis, A., Teufel, A., Petri, S., Stober, G., Riederer, P., Bengel, D.., and Lesch, K. P. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66, 2621–2624Google Scholar
Heilis, A., Mossner, R., and Lesch, K. P. (1997). The human serotonin transporter gene polymorphism – basic research and clinical implications. Journal of Neural Transmission, 104, 1005–1014Google Scholar
Jacobs, D., Blackburn, H., Higgins, M., Reed, D., Iso, H., McMillan, G., Neaton, J., Nelson, J., Potter, J., Rivkind, B., Rossuow, J., Shekelle, R., and Yousuf, S. (1992). Report of the conference on low blood cholesterol mortality associations. Circulation, 86, 1046–1060CrossRefGoogle Scholar
Jenkins, C. D., Holmes, C. J., Zizanski, S. G., Rosenman, R. H., and Friedman, M. (1969). Psychological traits and serum lipids I. Findings from the California Psychological Inventory. Psychosomatic Medicine, 31, 115–128Google Scholar
Kaplan, J., Manuck, S., and Shively, C. (1991). The effect of fat and cholesterol on social behavior in monkeys. Psychosomatic Medicine, 53, 634–642CrossRefGoogle Scholar
Kruesi, M. J., Linnoila, M., Rapoport, J. L., Brown, G. L., and Petersen, R. (1985). Carbohydrate craving, conduct disorder, and low 5HIAA. Psychiatry Research, 16(1), 83–86Google Scholar
Kruesi, M. J. P., Rapoport, J. L., Hamburger, S., Hibbs, E., Potter, W. Z., Lenane, M., and Brown, G. L., (1990). Cerebrospinal fluid monoamine metabolites, aggression and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419–426Google Scholar
Kruesi, M. J. P., Hibbs, E. D., Zahn, T. P., Keysor, C. S., Hanburger, S. D., Bartko, J. J., and Rapoport, J. L. (1992). A 2-year prospective follow up of children and adolescents with disruptive behavior disorders. Prediction by CSF 5-HIAA, HVA and autonomic measures?Archives of General Psychiatry, 49, 429–435Google Scholar
Kunugi, H., Ishida, S., Kato, T., Tatsumi, M., Hirose, T., and Nank, S. (1999). No evidence for association of polymorphisms of the tryptophan hydroxylase gene with affective disorders or attempted suicide among Japanese patients. American Journal of Psychiatry, 156, 774–776Google Scholar
Kyes, R. C., Botchin, M. B., Kaplan, J. R., Manuck, S. B., and Mann, J. J. (1995). Aggression and brain serotonergic responsivity: response to slides in male macaques. Physiology and Behavior, 57(2), 205–208Google Scholar
Lesch, K. P., and Mossner, R. (1998). Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental and neurodegenerative disorders?Biological Psychiatry, 44, 179–192Google Scholar
Lesch, K. P., Wolozin, B. L., Estler, H. C., Murphy, D. L., and Riederer, P. (1993). Isolation of a cDNA encoding the human brain serotonin transporter. Journal of Neural Transmission [Gen Sect], 91, 67–72Google Scholar
Lesch, K. P., Balling, U., Gross, J., Strauss, K., Wolozin, B. L., Murphy, D. L., and Riederes, P. (1994). Organization of the human serotonin transporter gene. Journal of Neural Transmission [Gen Sect], 95, 157–162Google Scholar
Lesch, K. P., Gross, J., Franzek, E., Wolozin, B. L., Riederer, P., and Murphy, D. L. (1995). Primary structure of the serotonin transporter in unipolar depression and bipolar disorder. Biological Psychiatry, 37, 215–223Google Scholar
Li, T., Xu, K., Deng, H., Cai, G., Liu, G., Liu, X., Wang, R., Xiang, X., Zhao, J., Murray, R. M., Sham, P. C., and Collier, D. A. (1997). Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects. Molecular Psychiatry, 2, 413–416Google Scholar
Lidberg, L., Asberg, M., and Sundquist-Stensman, U. B. (1984). -Hydroxyindoleacetic acid in attempted suicides who have killed their children. Lancet, II, 928Google Scholar
Lidberg, L., Tuck, J. R., Asberg, M., Scalia-Tomba, G. P., and Bertilsson, L. (1985). Homicide, suicide and CSF 5-HIAA. Acta Psychiatrica Scandinavica, 71, 230–236Google Scholar
Lindberg, G., Rastam, L., Gullberg, G., and Ecklund, G. A. (1992). Low serum cholesterol concentration and short time mortality from injuries in men and women. British Medical Journal, 305, 277–297Google Scholar
Linkowski, P., Wettere, J. P., Kerkhofs, M., Brauman, H., and Mendlewicz, J. (1983). Thyrotrophin response to thyreostimulin in affectively ill women relationship to suicidal behaviour. British Journal of Psychiatry, 143, 401–405CrossRefGoogle Scholar
Linkowski, P., Wettere, J. P., Kerkhofs, M., Gregoire, F., Brauman, H., and Mendlewicz, J. (1984). Violent suicidal behavior and the thyrotropin-releasing hormone-thyroid-stimulating hormone test: a clinical outcome study. Neuropsychobiology, 12(1), 19–22CrossRefGoogle Scholar
Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R., and Goodwin, F. K. (1983). Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from non-impulsive violent behavior. Life Science, 33, 2609–2614Google Scholar
Little, K. Y., Clark, T. B., Ranc, J., and Duncan, G. E. (1995). Beta-adrenergic receptor binding in frontal cortex from suicide victims. Biological Psychiatry, 34, 596–605Google Scholar
Lowther, S., Paermentier, F., Cheetham, S. C., Crompton, M. R., Katona, C. L., and Horton, R. W. (1997). 5-HT1A receptor binding sites in post mortem brain samples from depressed suicides and controls. Journal of Affective Disorders, 42(2–3), 199–207CrossRefGoogle Scholar
Malone, K. M., Haas, J. M., Sweeney, J., and Mann, J. J. (1995). Major depression and the risk of attempted suicide. Journal of Affective Disorders, 34, 173–175Google Scholar
Malone, K. M., Corbitt, E. M., Li, S., and Mann, J. J. (1996). Prolactin response and suicide attempt lethality in major depression. British Journal of Psychiatry, 168(3), 324–329CrossRefGoogle Scholar
Mann, J. J., and Arango, V. (1992). Integration of neurobiology and psychopathology in a unified model of suicidal behavior. Journal of Clinical Psychopharmacology, 12, 2–7CrossRefGoogle Scholar
Mann, J. J., and Malone, K. M. (1997). Cerebrospinal fluid amines and higher – lethality suicide attempts in depressed inpatients. Biological Psychiatry, 41(2), 162–171Google Scholar
Mann, J. J., McBride, P. A., Brown, R. P., Linnoila, M., Leon, A., Meo, M., Mieczkowski, T., Myers, J., and Stanley, M. (1992). Relationship between central and peripheral serotonin indexes in depressed and suicidal psychiatric inpatients. Archives of General Psychiatry, 49, 442–446CrossRefGoogle Scholar
Mann, J. J., McBride, P. A., Malone, K. M., and DeMeo, M. (1995). Blunted serotonergic responsivity in depressed inpatients. Neuropsychopharmacology, 13, 53–64Google Scholar
Mann, J. J., Henteleff, R. A., Lagattuta, T. F., Perper, J. A., Li, S., and Arango, V. (1996a). Lower 3H-paroxetine binding in cerebral cortex of suicide victims is partly due to fewer high affinity, non-transporter sites. Journal of Neural Transmission, 103(11), 1337–1350Google Scholar
Mann, J. J., Malone, K. M., Psych, M. R., Sweeney, J. A., Brown, R. P., Linnoila, M., Stanley, B., and Stanley, M. (1996b). Attempted suicide characteristics and cerebrospinal fluid amine metabolites in depressed patients. Neuropsychopharmacology, 16(6), 576–586Google Scholar
Mann, J. J., Malone, K. M., Nielsen, D. A., Goldman, D., Erdos, J., and Gelernter, J. (1997). Possible association of a polymorphism of the tryptophan hydroxylase gene with suicidal behavior in depressed patients. American Journal of Psychiatry, 154, 1451–1453Google Scholar
Mann, J. J., Oquendo, M., Underwood, M. D., and Arango, V. (1999). The neurobiology of suicide risk: a review for the clinician. Journal of Clinical Psychiatry, 60 (Suppl 27–11), 113–116Google Scholar
Mann, J. J., Huang, Y. Y., Underwood, M. D., Kassir, S. A., Oppenheim, S., Kelly, T. M., Dwork, A. J., and Arango, V. (2000). A serotonin transporter gene promoter polymorphism (5-HHTTLPR) and prefrontal cortical binding in major depression and suicide. Archives of General Psychiatry, 57(8), 729–738Google Scholar
Manuck, S. B., Flory, J. D., Ferrell, R. E., Dent, K. M., Mann, J. J., and Muldoon, M. F. (1999). Aggression and anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene. Biological Psychiatry, 45, 603–614Google Scholar
Marazzati, D., Presta, S., Silvestri, S., Battistini, A., Mosti, L., Balestri, C., Palego, L., and Conti, L. (1995). Platelet markers in suicide attempters. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19(3), 375–383Google Scholar
Marazzati, D., Presta, S., Silvestri, S., Mosti, L., Balestri, C., Palego, L., and Conti, L. (1995). Platelet markers in suicide attempters. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 19(3), 375–383CrossRefGoogle Scholar
McBride, P. A., Brown, R. P., DeMeo, M., Keilip, J., Mieczowski, T., and Mann, J. J. (1994). The relationship of platelet 5 HT2 receptor indices to major depressive disorder, personality traits and suicidal behavior. Biological Psychiatry, 35(5), 295–308CrossRefGoogle Scholar
McCay, K., Halperin, R., Grayson, S., Hall, N., and Newcorn, J. H. (1993). The children's aggression scale. Parent and teacher version. Scientific Proceedings of the Annual Meeting of the American Academy of Child and Adolescent Psychiatry 9 [abstract]
Modai, I., Walevski, A., Dror, S., and Weizman, A. (1994). Serum cholesterol levels and suicidal tendencies in psychiatric inpatients. Journal of Clinical Psychiatry, 55, 252–254Google Scholar
Muldoon, M. F., Manuck, S. B., and Mathews, K. A. (1990). Lowering cholesterol concentrations and mortality: a quantitative review of primary prevention trials. British Medical Journal, 301, 309–314Google Scholar
Muldoon, M. F., Manuck, S. B., and Mathews, K. A. (1991). Does cholesterol lowering increase non-illness related mortality?Archives of Internal Medicine, 151, 1453–1459Google Scholar
Neaton, J. D., Blackburn, H., Jacobs, D., and the Multiple Risk Factor Intervention Research Group (1992). Serum cholesterol levels and mortality findings for men screened in the Multiple Risk Intervention Trial. Archives of Internal Medicine, 152, 1490–1500Google Scholar
New, A. S., Trestman, R. L., Mitropoulo, V., Coccaro, E., Silverman, J., and Siever, L. J. (1997). Serotenergic function and self injurious behavior in personality disorder patients. Psychiatry Research, 69(1), 17–26Google Scholar
Nielsen, D. A. (1996). TPH replication study. Not!Archives of General Psychiatry, 53, 964–965Google Scholar
Nielsen, D. A., Dean, M., and Goldman, D. (1992). Genetic mapping of the human tryptophan hydroxylase gene on chromosome 11, using an intronic conformational polymorphism. American Journal of Human Genetics, 51, 1366–1371Google Scholar
Nielsen, D. A., Goldman, D., Virkkunnen, M., Tokola, R., Rawlings, R., and Linnoila, M. (1994). Suicidality and 5-HIAA concentration associated with a tryptophan hydroxylase polymorphism. Archives of General Psychiatry, 51, 34–40Google Scholar
Nielsen, D. A., Jenkins, G. L., Stefasko, K. M., Jefferson, K. K., and Goldman, D. (1997). Sequence, splice site and population frequency distribution analyses of the tryptophan hydroxylase intron 7. Molecular Brain Research, 45, 145–148Google Scholar
Nielsen, D. A., Virkkunen, M., Lappalainen, J., Eggert, M., Brown, G. L., Long, J. C., Goldman, D., and Linnoila, M. (1998). Tryptophan hydroxylase gene marker for suicidality and alcoholism. Archives of General Psychiatry, 55, 593–602Google Scholar
Ninan, P. T., Kammen, D. P., Scheinin, M., Linnoila, M., Bunney, W. E., and Goodwin, F. K. (1984). CSF 5-hydroxyindoleacetic acid levels in suicidal schizophrenic patients. American Journal of Psychiatry, 141(4), 566–569Google Scholar
Nolan, K. A., Volavka, J., Lachman, H. M., and Saito, T. (2000). An association between a polymorphism of the tryptophan hydroxylase gene and aggression in schizophrenia and schizoaffective disorder. Psychiatry and Genetics, 10, 109–115Google Scholar
Nordstrom, P., Samuelsson, M., Traskman-Bendz, L., Aberg-Widstedt, A., Nordin, C., and Bertilsson, L. (1994). CSF5-HIAA predicts suicide risk after attempted suicide. Suicide and Life Threatening Behavior, 24(1), 1–9Google Scholar
O'Neil, M., Page, N., Adkins, W. N., and Eicelman, B. (1986). Tryptophan-trazodone treatment of aggressive behavior. Lancet, 11, 859–860Google Scholar
Oquendo, M. A., and Mann, J. J. (2000). The biology of impulsivity and suicidality. Psychiatric Clinics of North America, 23(1), 11–25Google Scholar
Ordway, G. A., Smith, K. S., and Haycock, J. W. (1994). Elevated tyrosine hydroxylase in the locus coerulus of suicide victims. Journal of Neurochemistry, 58, 494–502Google Scholar
Oreland, L., Wiberg, A., Asberg, M., Traskman, L., Sjostrand, L., Thoren, P., Bertilsson, L., and Tybring, G. (1981). Platelet MAO activity and monoamine metabolites in cerebrospinal fluid in depressed and suicidal patients and in healthy controls. Psychiatry Research, 4, 21–29Google Scholar
Ostroff, R., Giller, E., Bonese, K., Ebersole, E., Harkness, L., and Mason., J. (1982). Neuroendocrine risk factors of suicidal behavior. American Journal of Psychiatry, 139, 1323–1325Google Scholar
Pacheco, M. A., Stockmeir, C., Meltzer, H. Y., Overholzer, J. C., Dilley, G. E., and Jope, R. S. (1966). Alterations in phosphoinositide signaling and G-protein levels in depressed suicide brain. Brain Research, 713(1–2), 37–45Google Scholar
Pandey, G. N., Pandey, S. C., Dwivedi, Y., Sharma, R. P., Janicak, P. G., and Davis, J. M. (1995). Platelet serotonin-2A receptors: a potential marker for suicidal behavior. American Journal of Psychiatry, 152(6), 850–855Google Scholar
Pandey, G. N., Dwivedi, Y., Pandey, S. C., Conley, R. R., Roberts, R. C., and Taminga, C. A. (1997). Protein kinase C in the postmortem brain of teenage suicide victims. Neuroscience Letters, 228(2), 111–114Google Scholar
Pekkanen, J., Nissinen, A., Punsar, S., and Karonen, M. J. (1989). Serum cholesterol and risk of accidental death in a 25 year follow up: the Finnish cohort of the Seven Countries Study. Archives of Internal Medicine, 149, 1589–1591Google Scholar
Persson, B., and Johanssen, B. W. (1984). The Kockum study: 22 year follow up. Acta Medica Scandinavica, 216, 85–493Google Scholar
Persson, M. L., Wasserman, D., Geijer, T., Jonsson, E, and Terenius, L. (1997). Tyrosine hydroxylase allelic distribution in suicide attempters. Psychiatry Research, 72, 73–80Google Scholar
Pfeffer, C. R., Normandin, L., and Tatsyuki, K. (1994). Suicidal children grow up: suicidal behavior and psychiatric disorders among relatives. Journal of the American Academy of Child and Adolescent Psychiatry, 33, 1087–1097Google Scholar
Pichot, W., Ansseau, M., Gonzalez-Moreno, A., Wauthy, J., Hansenne, M., and Frenckell, R. (1995). Relationship between alpha 2-adrenergic function and suicidal behavior in depressed patients. Biological Psychiatry, 38, 201–203Google Scholar
Pickar, D., Roy, A., Breier, A., Doran, A., Wolkowitz, O., Colison, J., and Agren, H. (1986). Suicide and aggression in schizophrenia. In Mann, J. J., and Stanley, M. (eds.) Psychobiology of Suicidal Behavior. Special issue of Annals of the New York Academy of Sciences, pp. 189–196
Pliszka, S. R. (1987). Tricyclic antidepressants in the treatment of children with attention deficit disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 26(2), 127–132Google Scholar
Plutchik, R., and Praag, H. M. (1986). The measurement of suicidality, aggressivity and impulsivity. Clinical Neuropharmacology, 9 (Suppl.), 380–382Google Scholar
Plutchik, R., and Praag, H. M. (1990). A self-report measure of violence risk, II. Comprehensive Psychiatry, 31, 450–456Google Scholar
Potegal, M., Yoburn, B., and Glusman, M. (1983). Disinhibition of muricide and irritability by intraseptal muscimol. Pharmacology, Biochemistry and Behavior, 19, 663–669Google Scholar
Pucilowski, O., Kostowski, W., Bidzinski, A., and Hauptmann, M. (1982). Effect of 6-hydroxydopamine –induced lesions of A-10 dopaminergic neurons on aggressive behavior in rats. Pharmacology, Biochemistry and Behavior, 16, 547–551Google Scholar
Ramamoorthy, S., Bauman, A., Moore, K., Han, H., Yang-Feng, T., Chang, A., Ganapathy, V., and Blakely, R. D. (1993). Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proceedings of the National Academy of Science of the USA, 90, 2542–2546Google Scholar
Reissner, I. R., Mann, J. J., Stanley, M., Huang, Y. Y., and Houpt, K. A. (1966). Comparison of cerebrospinal fluid monoamine metabolites levels in dominant aggressive and non-aggressive dogs. Brain Research, 714(1–2), 57–64Google Scholar
Roy, A., and Linnoila, M. (1988). Suicidal behavior, impulsiveness and serotonin. Acta Psychiatrica Scandinavica, 78(5), 529–535Google Scholar
Roy, A., Pickar, D., Linnoila, M., Doran, A. R., Ninan, P., and Paul, S. M. (1985). Cerebrospinal fluid monoamine and monoamine metabolite concentrations in melancholia. Psychiatry Research, 15(4), 281–292Google Scholar
Roy, A., Agren, H., Pickar, D., Linnoila, M., Doran, A., Cultler, N., and Paul, S. (1986). Reduced concentrations of HVA and 5HT ratios in depressed patients: relationship to suicidal behavior and dexamethazone nonsuppression. American Journal of Psychiatry, 143, 1539–1545Google Scholar
Roy, A., Everett, D., Pickar, D., and Paul, S. M. (1987). Platelet tritiated imipramine binding and serotonin uptake in depressed patients and controls. Relationship to plasma cortisol levels before and after dexamethasone administration. Archives of General Psychiatry, 44(4), 320–327Google Scholar
Roy, A., Jong, J., and Linnoila, M. (1989). Cerebrospinal fluid monoamine metabolites and suicidal behavior in depressed patients. Archives of General Psychiatry, 4, 609–612Google Scholar
Russ, M. J., Lachman, H. M., Kashdan, T., Saito, T., and Bajmakovic-Kacila, S. (2000). Analysis of catechol-O-methyltransferase and 5-hydroxytryptamine transporter polymorphisms in patients at risk for suicide. Psychiatry Research, 93, 73–78Google Scholar
Ryan, N. D., Birmaher, B., Perel, J. M., Dahl, R. E., Meyer, V., al-Shabbout, M., Iyengar, S., and Puig-Antich, J. (1992). Neuroendocrine response to L-5-hydroxytryptophan challenge in prepubertal major depression. Depressed vs normal children. Archives of General Psychiatry, 49(11), 843–851Google Scholar
Rydin, E., Schalling, D., and Asberg, M. (1982). Rorschach ratings in depressed and suicidal patients with low levels of 5-hydroxyindoleacetic acid in cerebrospinal fluid. Psychiatry Research, 7, 229–243Google Scholar
Sanders-Bush, E., and Mayer, S. E. (1996). 5-Hydroxytryptamine (serotonin) receptor agonists and antagonists. In: Hardman, Limbird, Molinoff, Ruddon, Gilman, (eds.) Goodman and Gilman's The Pharmacological Basis of Therapeutics (9th edition). McGraw-Hill companies, pp. 249–256
Sandler, M., Ruthven, C. R., Goodwin, G. L., Field, H., and Matthews, R. (1978). Phenylethylamine overproduction in aggressive psychopaths. Lancet, 2, 1269–1270Google Scholar
Sarchiapone, M., Camardese, G., Roy, A., Della-Casa, S., Satta, M. A., Gonzalez, B., Berman, J., and De-Risio, S. (2001). Cholesterol and serotonin indices in depressed and suicidal patients. Journal of Affective Disorders, 63(3), 217–219Google Scholar
Scaramella, T. J., and Brown, W. A. (1978). Serum testosterone and aggressiveness in hockey players. Psychosomotor Medicine, 40(3), 262–265Google Scholar
Searcy, W. A., and Wingfield, J. C. (1980). The effects of androgen and antiandrogen on dominance and aggressiveness in male red-winged blackbirds. Hormones and Behavior, 14(2), 126–135Google Scholar
Sedvall, G., Fyro, B., Gullberg, B., Nyback, H., Wiesel, F.-A., and Wode-Helgodt, B. (1980). Relationships in healthy volunteers between concentration of monoamine metabolites in cerebrospinal fluid and family history of psychiatric morbidity. British Journal of Psychiatry, 136, 366–374Google Scholar
Sheard, M. H., Marini, J. L., Bridges, C. I., and Wagner, E. (1976). The effect of lithium on impulsive aggressive behavior in man. American Journal of Psychiatry, 133(12), 1409–1413Google Scholar
Shimon, H., Agam, C., Belmaker, R. M., Hyde, T. M., and Kleinman, J. E. (1997). Reduced frontal cortex inositol levels in postmortem brain of suicide victims and patients with bipolar disorder. American Journal of Psychiatry, 154(8), 1148–1150Google Scholar
Simler, S., Puglisi-Allegra, S., and Mandel, P. (1982). Gamma-Aminobutyric acid in brain areas of isolated aggressive or non-aggressive inbred strains of mice. Pharmacology, Biochemistry and Behavior, 16(1), 57–61Google Scholar
Simler, S., Puglisi-Allegra, S., and Mandel, P. (1983). Effects of n-di-propylacetate on aggressive behavior and brain GABA level in isolated mice. Pharmacology, Biochemistry and Behavior, 18(5), 717–720Google Scholar
Skolnick, P., Reed, G. F., and Paul, S. M. (1985). Benzodiazepine-receptor mediated inhibition of isolation-induced aggression in mice. Pharmacology, Biochemistry and Behavior, 23(1), 17–20Google Scholar
Smith, G. D., Shipley, M., Marmot, M. G., and Rose, G. (1992). Plasma cholesterol concentration and mortality. The Whitehall Study. Journal of the American Medical Association, 267, 70-76Google Scholar
Spreux-Varoquax, O., Alvarez, J. C., Berlin, I., Batista, G., Despierre, P. G., Gilton, A., and Cremniter, D. (2001). Differential abnormalities in plasma 5-HIAA and platelet serotonin concentrations in violent suicide attempters: relationships with impulsivity and depression. Life Sciences, 69(6), 647–657Google Scholar
Stanley, B., Molcho, A., Stanley, M., Winchel, R., Gameroff, M. J., Parsons, B., and Mann, J. J. (2000). Association of aggressive behavior with altered serotonergic function in patients who are not suicidal. American Journal of Psychiatry, 157(4), 609–614Google Scholar
Strandberg, T. E., Salomaa, W., Naukkanin, V. A., Vanhanen, H. T., Sarna, S. J., and Miettinen, T. A. (1991). Long term mortality after five year multifactorial primary prevention of cardiovascular diseases in middle aged males. Journal of the American Medical Association, 266, 1225–1229Google Scholar
Sullivan, P. F., Joyce, P. R., Bilih, C. N., Muhler, R. T., and Oackley-Browne, M. (1994). Total cholesterol and suicidality in depression. Biological Psychiatry, 36, 472–477Google Scholar
Traskman, L., Asberg, M., Bertilsson, L., and Sjostrand, L. (1981). Monoamine metabolites in CSF and suicidal behavior. Archives of General Psychiatry, 38 (6), 631–636Google Scholar
Traskman-Bendz, L., and Asberg, M. (1986). Serotonergic function and suicidal behavior in personality disorders. In Mann, J. J., and Stanley, M. (eds.) Psychobiology of Suicidal Behavior. Special issue of Annals of the New York Academy of Sciences, pp. 168–1774
Traskman-Bendz, L., Asberg, M., Bertilsson, L., and Thoren, P. (1984). CSF monoamine metabolites of depressed patients during illness and after recovery. Acta Psychiatrica Scandinavica, 69, 333–342Google Scholar
Tripodianakis, J., Markianos, M., Sarantidis, D., and Leotsakou, C. (2000). Neurochemical variables in subjects with adjustment disorder after suicide attempts. European Psychiatry, 15(3), 190–195Google Scholar
Tsuang, M. T. (1983). Risk of suicide in the relatives of schizophrenics, manics, depressives and controls. Journal of Clinical Psychiatry, 44, 396–400Google Scholar
Turker, T., Sodmann, R., Goebel, U., Jatzke, S., Knapp, M., Lesch, K. P., Schuster, R., Schutz, H., Weiler, G., and Stober, G. (1998). High ethanol tolerance in young adults is associated with the low-activity variant of the promoter of the human serotonin transporter gene. Neuroscience Letters, 248, 147–150Google Scholar
Valzelli, L. (1981). Psychobiology of Aggression and Violence. New York, NY: Raven Press
Valzelli, L. (1984). Reflections on experimental and human pathology of aggression [review]. Progress in Neuropsychopharmacology and Biological Psychiatry, 8(3), 311–325Google Scholar
Valzelli, L. (1985). Animal Models of behavioral pathology and violent aggression. Methods and Findings of Experimental and Clinical Pharmacology, 7(4), 189–193Google Scholar
Heeringen, K., Audenaert, K., Van-de-Wielde, E., and Verstraete, A. (2000). Cortisol in violent suicidal behaviour. Association with personality and monoaminergic activity. Journal of Affective Disorders, 60(3), 181–189Google Scholar
Praag, H. M. (1982a). Biochemical and psychopathological predictors of suicidality. Bibliotheca-psychiatrica, 162, 42–60Google Scholar
Praag, H. M. (1982b). Depression, suicide and the metabolism of serotonin in the brain. Journal of Affective Disorders, 4, 275–290Google Scholar
Praag, H. M. (1983). CSF 5-HIAA and suicide in non-depressed schizophrenics. Lancet, II, 977–978Google Scholar
Praag, H. M. (1986a). (Auto)Aggression and CSF 5-HIAA in depression and schizophrenia. Psychopharmacology Bulletins, 22(3), 669–673Google Scholar
Praag, H. M. (1986b). Biological suicide research: outcome and limitations. Biological Psychiatry, 21, 1305–1323Google Scholar
van Praag, H. M. (1986c). Monoamines and depression: the present state of the art. In Plutchik, R. (ed.) Emotion: Theory, Research and Experience. New York, NY: Academic Press
Praag, H. M. (1996). Serotonin-related, anxiety/aggression-driven, stressor related depression. A psychobiological hypothesis. European Journal of Psychiatry, 11, 57–67Google Scholar
Praag, H. M. (2000). Serotonin disturbances and suicide risk: is aggression or anxiety the interadjacent link?Crisis, 21(4), 160–162Google Scholar
Vartainen, E., Pouska, P., Pekkanen, J., Tuomilehto, J., Lonquist, J., and Ehnholm, C. (1994). Serum cholesterol and accidental or other violent death. British Medical Journal, 309, 445–447Google Scholar
Vestergaard, P., Sorensen, T., Hoppe, E., Rafaelsen, O. J., Yates, C. M., and Nicolaou, N. (1978). Biogenic amine metabolites in cerebrospinal fluid of patients with affective disorders. Acta Psychiatrica, Scandinavica, 58, 88–96Google Scholar
Virkkunen, M. (1979). Serum cholesterol in antisocial personality. Neuropsychobiolology, 5, 27–30Google Scholar
Virkkunen, M. (1983a). Serum cholesterol levels in homicidal offenders. Neuropsychobiology, 10, 65–69Google Scholar
Virkkunen, M. (1983b). Insulin secretion during the glucose tolerance test in antisocial personality. British Journal of Psychiatry, 142, 598–604Google Scholar
Virkkunen, M., and Pentinnen, H. (1984). Serum cholesterol in aggressive conduct disorder. Biological Psychiatry, 19, 435–439Google Scholar
Virkkunen, M., Goldman, D., Nielsen, D. A., and Linnoila, M. (1995). Low brain serotonin turnover rate (low CSF-5-HIAA) and impulsive violence. Journal of Psychiatry and Neuroscience, 20(4), 271–275Google Scholar
Weidner, G., Connor, S. L., Hollis, J. F., and Connor, W. E. (1992). Improvements in hostility and depression in relation to dietary change and cholesterol lowering. The Family Heart Study. Annals of Internal Medicine, 117, 820–823Google Scholar
Weizman, A., Burgin, R., Harel, Y., and Gavish, M. (1995). Platelet peripheral type benzodiazepine receptor in major depression. Journal of Affective Disorders, 33(4), 257–261Google Scholar
WHO Multiple Risk Factor Intervention Trial Research Group. (1990). Mortality rates after 10.5 years for participants in the Multiple Risk Factor Intervention Trial. Findings related to a priori hypotheses of the trial. Journal of the American Medical Association, 263(13), 1795–1801
Woodman, D. D., Hinton, J. W., and O'Neill, M. T. (1978). Plasma catecholamines, stress and aggression in maximum security patients. Biological Psychology, 6(2), 147–154Google Scholar
Yamamoto, H., Nagai, K., and Nakagawa, H. (1984). Additional evidence that the suprachiasmatic nucleus is the center for regulation of insulin secretion and glucose homeostasis. Brain Research, 304(2), 237–241Google Scholar
Yamamoto, H., Nagai, K., and Nakagawa, H. (1985). Lesions involving the suprachiasmatic nucleus eliminate the glucagon response to intracranial injection of 2-deoxy-D-glucose. Endocrinology, 117(2), 468–473Google Scholar
Zalsman, G., Frisch, A., Bromberg, M., Gelernter, J., Michaelovsky, E., Campino, A., Erlich, Z., Tyano, S., Apter, A., and Weizman, A. (2001a). Family-based association study of serotonin transporter promoter in suicidal adolescents: possible role in violence traits. American Journal of Medical Genetics, 105, 239–245Google Scholar
Zalsman, G., Frisch, A., King, R. A., Pauls, D. L., Grice, D. E., Gelernter, J., Alsobrook, J., Michaelovsky, E., Apter, A., Tyano, S., Weizman, A., and Leckman, J. F. (2001b). Case–control and family-based association studies of tryptophan hydroxylase A218C polymorphism and suicidality in adolescents. American Journal of Medical Genetics, 105, 451–457Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×