Book contents
- Frontmatter
- Contents
- Preface
- Frequently used notation
- 1 Basic notions
- 2 Brownian motion
- 3 Martingales
- 4 Markov properties of Brownian motion
- 5 The Poisson process
- 6 Construction of Brownian motion
- 7 Path properties of Brownian motion
- 8 The continuity of paths
- 9 Continuous semimartingales
- 10 Stochastic integrals
- 11 Itô's formula
- 12 Some applications of Itô's formula
- 13 The Girsanov theorem
- 14 Local times
- 15 Skorokhod embedding
- 16 The general theory of processes
- 17 Processes with jumps
- 18 Poisson point processes
- 19 Framework for Markov processes
- 20 Markov properties
- 21 Applications of the Markov properties
- 22 Transformations of Markov processes
- 23 Optimal stopping
- 24 Stochastic differential equations
- 25 Weak solutions of SDEs
- 26 The Ray–Knight theorems
- 27 Brownian excursions
- 28 Financial mathematics
- 29 Filtering
- 30 Convergence of probability measures
- 31 Skorokhod representation
- 32 The space C[0, 1]
- 33 Gaussian processes
- 34 The space D[0, 1]
- 35 Applications of weak convergence
- 36 Semigroups
- 37 Infinitesimal generators
- 38 Dirichlet forms
- 39 Markov processes and SDEs
- 40 Solving partial differential equations
- 41 One-dimensional diffusions
- 42 Lévy processes
- Appendices
- References
- Index
5 - The Poisson process
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- Preface
- Frequently used notation
- 1 Basic notions
- 2 Brownian motion
- 3 Martingales
- 4 Markov properties of Brownian motion
- 5 The Poisson process
- 6 Construction of Brownian motion
- 7 Path properties of Brownian motion
- 8 The continuity of paths
- 9 Continuous semimartingales
- 10 Stochastic integrals
- 11 Itô's formula
- 12 Some applications of Itô's formula
- 13 The Girsanov theorem
- 14 Local times
- 15 Skorokhod embedding
- 16 The general theory of processes
- 17 Processes with jumps
- 18 Poisson point processes
- 19 Framework for Markov processes
- 20 Markov properties
- 21 Applications of the Markov properties
- 22 Transformations of Markov processes
- 23 Optimal stopping
- 24 Stochastic differential equations
- 25 Weak solutions of SDEs
- 26 The Ray–Knight theorems
- 27 Brownian excursions
- 28 Financial mathematics
- 29 Filtering
- 30 Convergence of probability measures
- 31 Skorokhod representation
- 32 The space C[0, 1]
- 33 Gaussian processes
- 34 The space D[0, 1]
- 35 Applications of weak convergence
- 36 Semigroups
- 37 Infinitesimal generators
- 38 Dirichlet forms
- 39 Markov processes and SDEs
- 40 Solving partial differential equations
- 41 One-dimensional diffusions
- 42 Lévy processes
- Appendices
- References
- Index
Summary
At the opposite extreme from Brownian motion is the Poisson process. This is a process that only changes value by means of jumps, and even then, the jumps are nicely spaced. The Poisson process is the prototype of a pure jump process, and later we will see that it is the building block for an important class of stochastic processes known as Lévy processes.
Definition 5.1 Let {ℱt} be a filtration, not necessarily satisfying the usual conditions. A Poisson process with parameter λ > 0 is a stochastic process X satisfying the following properties:
(1) X0 = 0, a.s.
(2) The paths of Xt are right continuous with left limits.
(3) If s < t, then Xt – Xs is a Poisson random variable with parameter λ(t − s).
(4) If s < t, then Xt – Xs is independent of ℱs.
Define Xt− = lims→t,s<tXs, the left-hand limit at time t, and ΔXt = Xt – Xt–, the size of the jump at time t. We say a function f is increasing if s < t implies f(s) ≤ f(t). We use “strictly increasing” when s < t implies f(s) < f(t). We have the following proposition.
Proposition 5.2Let X be a Poisson process. With probability one, the paths of Xt are increasing and are constant except for jumps of size 1. There are only finitely many jumps in each finite time interval.
- Type
- Chapter
- Information
- Stochastic Processes , pp. 32 - 35Publisher: Cambridge University PressPrint publication year: 2011