Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T23:04:31.784Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 November 2016

Hiroyuki Matsumoto
Affiliation:
Aoyama Gakuin University, Japan
Setsuo Taniguchi
Affiliation:
Kyushu University, Japan
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Stochastic Analysis
Itô and Malliavin Calculus in Tandem
, pp. 337 - 343
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R., Adams and J., Fournier, Sobolev Spaces, 2nd edn., Academic Press, 2003.
[2] M., Aizenman and B., Simon, Brownian motion and Harnack's inequality for Schrödinger operators, Comm. Pure Appl. Math., 35 (1982), 209–273.Google Scholar
[3] V.I., Arnold, Mathematical Methods of Classical Mechanics, 2nd edn., Springer-Verlag, 1989.
[4] J., Avron, I., Herbst, and B., Simon, Schrödinger operators with magnetic fields, I. general interactions, Duke Math. J., 45 (1978), 847–883.Google Scholar
[5] P., Billingsley, Probability and Measure, 3rd edn., John Wiley & Sons, 1995.
[6] R.M., Blumenthal and R.K., Getoor, Markov Processes and Potential Theory, Academic Press, 1968.
[7] V., Bogachev, Gaussian Measures, Amer. Math. Soc., 1998.
[8] N., Bouleau and F., Hirsch, Dirichlet Forms and Analysis onWiener Space, Walter de Gruyter, 1991.
[9] C., Cocozza and M., Yor, Démonstration d'[A-z]n théorème de Knight à l'[A-z]ide de martingales exponentielles, Séminaire de Probabilités, XIV, eds. J., Azama and M., Yor, Lecture Notes in Math., 784, 496–499, Springer-Verlag, 1980.
[10] H.L., Cycon, R.G., Froese, W., Kirsch, and B., Simon, Schrödinger Operators, with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, 1987.
[11] E.B., Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.
[12] B., Davis, Picard's theorem and Brownian motion, Trans. Amer. Math. Soc., 213 (1975), 353–362.Google Scholar
[13] C., Dellacherie, Capacités et Processus Stochastiques, Springer-Verlag, 1971.
[14] D., Deuschel and D., Stroock, Large Deviations, Academic Press, 1989.
[15] J.L., Doob, Stochastic Processes, John Wiley & Sons, 1953.
[16] H., Doss, Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré Sect. B (N.S.), 13 (1977), 99–125.Google Scholar
[17] R.M., Dudley, Real Analysis and Probability, 2nd edn., Cambridge University Press, 2002.
[18] D., Duffie, Dynamic Asset Pricing Theory, 2nd edn., Princeton University Press, 1996.
[19] N., Dunford and J., Schwartz, Linear Operators, II, Interscience, 1963.
[20] R., Durrett, Brownian Motion and Martingales in Analysis, Wadsworth, 1984.
[21] R., Elliot and P., Kopp, Mathematics of Financial Markets, Springer-Verlag, 1999.
[22] K.D., Elworthy, Stochastic Differential Equations on Manifolds, Cambridge University Press, 1982.
[23] W., Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, 1966.
[24] E., Fournié, J.-M., Lasry, J., Lebuchoux, P.-L., Lions, and N., Touzi, Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stoch. 3 (1999), 391–412.Google Scholar
[25] M., Fukushima, Y., Oshima, and M., Takeda, Dirichlet Forms and Symmetric Markov Processes, 2nd edn., Walter de Gruyter, 2010.
[26] P., Friz and M., Hairer, A Course on Rough Paths, Springer-Verlag, 2014.
[27] P., Friz and N., Victoir, Multidimensional Stochastic Processes as Rough Paths, Cambridge University Press, 2010.
[28] B., Gaveau and P., Trauber, L'[A-z]ntégrale stochastique comme opérateur de divergence dans l'[A-z]pace fonctionnel, J. Func. Anal., 46 (1982), 230–238.Google Scholar
[29] R.K., Getoor and M.J., Sharpe, Conformal martingales, Invent. Math., 16 (1972), 271–308.Google Scholar
[30] E., Getzler, Degree theory for Wiener maps, J. Func. Anal., 68 (1986), 388–403.Google Scholar
[31] I.S., Gradshteyn and I.M., Ryzhik, Tables of Integrals, Series, and Products, 7th edn., Academic Press, 2007.
[32] J.-C., Gruet, Semi-groupe du mouvement Brownien hyperbolique, Stochastic Rep., 56 (1996), 53–61.Google Scholar
[33] D., Hejhal, The Selberg Trace Formula for PSL(2,R), Vol.1, Vol.2, Lecture Notes in Math., 548, 1001, Springer-Verlag, 1976, 1983.
[34] B., Helffer and J., Sjöstrand, Multiple wells in the semiclassical limit, I, Comm. PDE, 9 (1984), 337–408.Google Scholar
[35] B., Helffer and J., Sjöstrand, Puits multiples en limite semi-classique, II. Interaction moléculaire. Symétries. Perturbation., Ann. Inst. H. Poincaré Phys. Théor., 42 (1985), 127–212.Google Scholar
[36] L., Hörmander, The Analysis of Linear Partial Differential Operators, I, Distribution Theory and Fourier Analysis, 2nd edn., Springer-Verlag, 1990.
[37] L., Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147–171.Google Scholar
[38] E. P., Hsu, Stochastic Analysis on Manifolds, Amer. Math. Soc., 2002.
[39] K., Ichihara, Explosion problem for symmetric diffusion processes, Trans. Amer. Math. Soc., 298 (1986), 515–536.Google Scholar
[40] N., Ikeda, S., Kusuoka, and S., Manabe, Lévy's stochastic area formula and related problems, in Stochastic Analysis, eds. M., Cranston and M., Pinsky, 281–305, Proc. Sympos. Pure Math., 57, Amer. Math. Soc., 1995.
[41] N., Ikeda and S., Manabe, Van Vleck–Pauli formula for Wiener integrals and Jacobi fields, in Itô's Stochastic Calculus and Probability Theory, eds. N., Ikeda, S., Watanabe, M., Fukushima, and H., Kunita, 141–156, Springer-Verlag, 1996.
[42] N., Ikeda and H., Matsumoto, Brownian motion on the hyperbolic plane and Selberg trace formula, J. Funct. Anal., 163 (1999), 63–110.Google Scholar
[43] N., Ikeda and H., Matsumoto, The Kolmogorov operator and classical mechanics, Séminaire de Probabilités XLVII, eds. C., Donati-Martin, A., Lejay, and A., Rouault, Lecture Notes in Math., 2137, 497–504, Springer-Verlag, 2015.
[44] N., Ikeda and S., Taniguchi, Quadratic Wiener functionals, Kalman-Bucy filters, and the KdV equation, in Stochastic Analysis and Related Topics in Kyoto, in honor of Kiyosi Itô, eds., H., Kunita, S., Watanabe, and Y., Takahashi, Adv. Studies Pure Math. 41, 167–187, Math. Soc. Japan, Tokyo, 2004.
[45] N., Ikeda and S., Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edn., North Holland/Kodansha, 1989.
[46] K., Itô, Essentials of Stochastic Processes (translated by Y. Ito), Amer Math. Soc., 2006. (Originally published in Japanese from Iwanami Shoten, 1957, 2006)
[47] K., Itô, Introduction to Probability Theory, Cambridge University Press, 1984. (Originally published in Japanese from Iwanami Shoten, 1978)
[48] K., Itô, Differential equations determining Markov processes, Zenkoku Shijo Sugaku Danwakai, 244 (1942), 1352–1400, (in Japanese). English translation in Kiyosi Itô, Selected Papers, eds. D., Stroock and S. R. S., Varadhan, Springer-Verlag, 1987.
[49] K., Itô, On stochastic differential equations, Mem. Amer. Math. Soc., 4 (1951).Google Scholar
[50] K., Itô and H.P., McKean, Jr., Diffusion Processes and Their Sample Paths, Springer-Verlag, 1974.
[51] K., Itô and M., Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka J. Math., 5 (1968), 35–48.Google Scholar
[52] M., Kac, Integration in Function Spaces and Some of Its Applications, Fermi Lectures, Accademia Nazionale dei Lincei, Scuola Normale Superiore, 1980.
[53] M., Kac, On distributions of certainWiener functionals, Trans. Amer. Math. Soc., 65 (1949), 1–13.Google Scholar
[54] M., Kac, On some connections between probability theory and differential and integral equations, Proceedings of 2nd Berkeley Symp. on Math. Stat. and Probability, 189–215, University of California Press, 1951.
[55] M., Kac, Can one hear the shape of a drum?, Amer. Math. Monthly, 73 (1966), 1–23.Google Scholar
[56] I., Karatzas and S.E., Shreve, Brownian Motion and Stochastic Calculus, 2nd edn., Springer-Verlag, 1991.
[57] I., Karatzas and S., Shreve, Methods of Mathematical Finance, Springer-Verlag, 1998.
[58] T., Kato, Perturbation Theory for Linear Operators, 2nd edn., Springer-Verlag, 1995.
[59] N., Kazamaki, The equivalence of two conditions on weighted norm inequalities for martingales, Proc. Intern. Symp. SDE Kyoto 1976 (ed. K., Itô), 141–152, Kinokuniya, 1978.
[60] F.B., Knight, A reduction of continuous square-integrable martingales to Brownian motion, in Martingales, ed. H., Dinges, Lecture Notes in Math., 190, 19–31, Springer-Verlag, 1971.
[61] H., Kunita, Estimation of Stochastic Processes (in Japanese), Sangyou Tosho, 1976.
[62] H., Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990.
[63] H., Kunita, Supports of diffusion processes and controllability problems, Proc. Intern. Symp. SDE Kyoto 1976 (ed. K., Itô), 163–185, Kinokuniya, 1978.
[64] H., Kunita, On the decomposition of solutions of stochastic differential equations, in Stochastic Integrals, ed. D., Williams, Lecture Notes in Math., 851, 213–255, Springer-Verlag, 1981.
[65] H., Kunita and S., Watanabe, On square integrable martingales, Nagoya Math. J., 30 (1967), 209–245.Google Scholar
[66] S., Kusuoka, The nonlinear transformation of Gaussian measure on Banach space and its absolute continuity, J. Fac. Sci. Tokyo Univ., Sect. 1.A., 29 (1982), 567–590.Google Scholar
[67] N.N., Lebedev, Special Functions and their Applications, translated by R. R., Silverman, Dover, 1972.
[68] M., Ledoux, Isoperimetry and Gaussian analysis, in Lectures on Probability Theory and Statistics, Ecole d'[A-z]té de Probabilités de Saint-Flour XXIV – 1994, ed. P., Bernard, Lecture Notes in Math., 1648, 165–294, Springer-Verlag, 1996.
[69] J.-F., LeGall, Applications du temps local aux equations différentielle stochastiques unidimensionalles, Séminaire de Probabilités XVII, edn. J., Azema and M., Yor, Lecture Notes in Math., 986, 15–31, Springer-Verlag, 1983.
[70] P., Lévy, Wiener's random function, and other Laplacian random functions, Proceedings of 2nd Berkeley Symp. on Math. Stat. and Probability, 171–186, University of California Press, 1951.
[71] T., Lyons, M., Caruana, and T., Lévy, Differential equations driven by rough paths, École d'Été de Probabilités de Saint-Flour XXXIV -2004, Lecture Notes in Math., 1908, Springer, 2007.
[72] T., Lyons and Z., Qian, System Control and Rough Paths, Oxford University Press, 2002.
[73] P., Malliavin, Stochastic Analysis, Springer-Verlag, 1997.
[74] P., Malliavin, Stochastic calculus of variation and hypoelliptic operators, Proc. Intern. Symp. SDE Kyoto 1976 ed. K., Itô, 195–263, Kinokuniya, 1978.
[75] P., Malliavin, Ck-hypoellipticity with degeneracy, in Stochastic Analysis, eds. A., Friedman and M., Pinsky, 199–214, 327–340, Academic Press, 1978.
[76] P., Malliavin and A., Thalmaier, Stochastic Calculus of Variations in Mathematical Finance, Springer-Verlag, 2006.
[77] G., Maruyama, Selected Papers, eds. N., Ikeda and H., Tanaka, Kaigai Publications, 1988.
[78] G., Maruyama, On the transition probability functions of the Markov process, Nat. Sci. Rep. Ochanomizu Univ., 5 (1954), 10–20.Google Scholar
[79] G., Maruyama, Continuous Markov processes and stochastic equations, Rend. Circ. Mate. Palermo., 4 (1955), 48–90.Google Scholar
[80] H., Matsumoto, Semiclassical asymptotics of eigenvalues for Schrödinger operators with magnetic fields, J. Funct. Anal., 129 (1995), 168–190.Google Scholar
[81] H., Matsumoto, L., Nguyen, and M., Yor, Subordinators related to the exponential functionals of Brownian bridges and explicit formulae for the semigroups of hyperbolic Brownian motions, in Stochastic Processes and Related Topics, eds. R., Buckdahn, E., Engelbert and M., Yor, 213–235, Gordon and Breach, 2001.
[82] H., Matsumoto and S., Taniguchi, Wiener functionals of second order and their Lévy measures, Elect. Jour. Probab., 7, No.14 (2002), 1–30.Google Scholar
[83] H., Matsumoto and M., Yor, A version of Pitman's 2M–X theorem for geometric Brownian motions, C.R. Acad. Sc. Paris Série I, 328 (1999), 1067–1074.Google Scholar
[84] H.P., McKean, Jr., Stochastic Integrals, Academic Press, 1969.
[85] H.P., McKean, Jr., Selberg's trace formula as applied to a compact Riemannian surface, Comm. Pure Appl. Math., 101 (1972), 225–246.Google Scholar
[86] P.A., Meyer, Probabilités et Potentiel, Hermann, 1966.
[87] T., Miwa, E., Date, and M., Jimbo, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras (translated by M., Reid), Cambridge University Press, 2000. (Originally published in Japanese from Iwanami Shoten, 1993)
[88] M., Musiela and M., Rutkowski, Martingale Methods in Financial Modeling, Springer-Verlag, 2003.
[89] S., Nakao, On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations, Osaka J. Math., 9 (1972), 513–518.Google Scholar
[90] A.A., Novikov, On an identity for stochastic integrals, Theory Prob. Appl., 17 (1972), 717–720.Google Scholar
[91] A.A., Novikov, On moment inequalities and identities for stochastic integrals, Proc. Second Japan–USSR Symp. Prob. Theor., eds. G., Maruyama and J.V., Prokhorov, Lecture Notes in Math., 330, 333–339, Springer-Verlag, 1973.
[92] D., Nualart, The Malliavin Calculus and Related Topics, 2nd edn., Springer-Verlag, 2006.
[93] B., Øksendal, Stochastic Differential Equations, an Introduction with Applications, 6th edn., Springer-Verlag, 2003.
[94] S., Port and C., Stone, Brownian Motion and Classical Potential Theory, Academic Press, 1978.
[95] K.M., Rao, On the decomposition theorem of Meyer, Math. Scand., 24 (1969), 66–78.Google Scholar
[96] D., Ray, On spectra of second order differential operators, Trans. Amer. Math. Soc., 77 (1954), 299–321.Google Scholar
[97] L., Richardson, Measure and Integration: a Concise Introduction to Real Analysis, John Wiley & Sons, 2009.
[98] D., Revuz and M., Yor, Continuous Martingales and Brownian Motion, 3rd edn., Springer-Verlag, 1999.
[99] L. C. G., Rogers and D., Williams, Diffusions, Markov Processes, and Martingales, Vol. 1, Foundations, 2nd edn., John Wiley & Sons, New York, 1994.
[100] L. C. G., Rogers and D., Williams, Diffusions, Markov Processes, and Martingales, Vol. 2, Itô Calculus, 2nd edn., John Wiley & Sons, New York, 1994.
[101] K., Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999.
[102] M., Schilder, Some asymptotic formulae for Wiener integrals, Trans. Amer. Math. Soc., 125 (1966), 63–85.Google Scholar
[103] A., Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47–87.Google Scholar
[104] I., Shigekawa, Stochastic Analysis, Amer. Math. Soc., 2004. (Originally published in Japanese from Iwanami Shoten, 1998)
[105] S., Shreve, Stochastic Calculus for Finance, I, II, Springer-Verlag, 2004.
[106] B., Simon, Functional Integration and Quantum Physics, Academic Press, 1979.
[107] B., Simon, Trace Ideals and Their Applications, 2nd edn., Amer. Math. Soc., 2005.
[108] B., Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447–526.Google Scholar
[109] B., Simon, Semiclassical analysis of low lying eigenvalues I, Non-degenerate minima: Asymptotic expansions, Ann. Inst. Henri-Poincaré, Sect. A, 38 (1983), 295–307.Google Scholar
[110] B., Simon, Semiclassical analysis of low lying eigenvalues II, Tunneling, Ann. Math., 120 (1984), 89–118.Google Scholar
[111] D.W., Stroock, Lectures on Topics in Stochastic Differential Equations, Tata Insitute of Fundamental Research, 1982.
[112] D.W., Stroock, Probability Theory: an Analytic View, 2nd edn., Cambridge University Press, 2010.
[113] D.W., Stroock, An exercise in Malliavin calculus, J. Math. Soc. Japan, 67 (2015), 1785–1799.Google Scholar
[114] D.W., Stroock and S. R. S., Varadhan, Multidimensional Diffusion Processes, Springer-Verlag, 1979.
[115] D.W., Stroock and S. R. S., Varadhan, On the support of diffusion processes with applications to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III., 361–368, University of California Press, 1972.
[116] H., Sugita, Positive generalized Wiener functions and potential theory over abstract Wiener spaces, Osaka J. Math., 25 (1988), 665–696.Google Scholar
[117] H.J., Sussmann, On the gap between deterministic and stochastic ordinary differential equations, Ann. Probab., 6 (1978), 19–41.Google Scholar
[118] S., Taniguchi, Brownian sheet and reflectionless potentials, Stoch. Pro. Appl., 116 (2006), 293–309.Google Scholar
[119] H., Trotter, A property of Brownian motion paths, Illinois J. Math., 2 (1958), 425–433.Google Scholar
[120] A.S., Üstünel and M., Zakai, Transformation of Measure on Wiener Space, Springer-Verlag, 2000.
[121] J. H. Van, Vleck, The correspondence principle in the statistical interpretation of quantum mechanics, Proc. Nat. Acad. Sci. U.S.A., 14 (1928), 178–188.Google Scholar
[122] S., Watanabe, Analysis of Wiener functionals (Malliavin calculus) and its applications to heat kernels, Ann. Probab., 15 (1987), 1–39.Google Scholar
[123] S., Watanabe, Generalized Wiener functionals and their applications, Probability theory and mathematical statistics, Proceedings of the Fifth Japan–USSR Symposium, Kyoto, 1986, eds. S., Watanabe and Y. V., Prokhorov, 541–548, Lecture Notes in Math., 1299, Springer-Verlag, Berlin, 1988.
[124] H., Weyl, Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers, Rend. Cir. Mat. Palermo, 39 (1915), 1–50.Google Scholar
[125] D.V., Widder, The Laplace Transform, Princeton University Press, 1941.
[126] D., Williams, Probability with Martingales, Cambridge University Press, 1991.
[127] E., Wong and M., Zakai, On the relation between ordinary and stochastic differential equations, Intern. J. Engng. Sci., 3 (1965), 213–229.Google Scholar
[128] T., Yamada and S., Watanabe, On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoyo Univ., 11 (1971), 155–167.Google Scholar
[129] Y., Yamato, Stochastic differential equations and nilpotent Lie algebras, Z. Wahr. verw. Geb., 47 (1979), 213–229.Google Scholar
[130] M., Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer-Verlag, 2001.
[131] M., Yor, Sur la continuité des temps locaux associés à certaines semimartingales, Astérisque 52–53 (1978), 23–35.Google Scholar
[132] M., Yor, On some exponential functionals of Brownian motion, Adv. Appl. Prob., 24 (1992), 509–531. (Also in [130])Google Scholar
[133] K., Yoshida, Functional Analysis, 6th edn., Springer-Verlag, 1980.

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hiroyuki Matsumoto, Aoyama Gakuin University, Japan, Setsuo Taniguchi, Kyushu University, Japan
  • Book: Stochastic Analysis
  • Online publication: 17 November 2016
  • Chapter DOI: https://doi.org/10.1017/9781316492888.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hiroyuki Matsumoto, Aoyama Gakuin University, Japan, Setsuo Taniguchi, Kyushu University, Japan
  • Book: Stochastic Analysis
  • Online publication: 17 November 2016
  • Chapter DOI: https://doi.org/10.1017/9781316492888.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hiroyuki Matsumoto, Aoyama Gakuin University, Japan, Setsuo Taniguchi, Kyushu University, Japan
  • Book: Stochastic Analysis
  • Online publication: 17 November 2016
  • Chapter DOI: https://doi.org/10.1017/9781316492888.010
Available formats
×