Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T11:52:46.833Z Has data issue: false hasContentIssue false

6 - Stochastic Models

Published online by Cambridge University Press:  29 March 2011

A. C. Davison
Affiliation:
Swiss Federal Institute of Technology, Lausanne
Get access

Summary

The previous chapter outlined likelihood analysis of some standard models. Here we turn to data in which the dependence among the observations is more complex. We start by explaining how our earlier discussion extends to Markov processes in discrete and continuous time. We then extend this to more complex indexing sets and in particular to Markov random fields, in which basic concepts from graph theory play an important role. A special case is the multivariate normal distribution, an important model for data with several responses. We give some simple notions for time series, a very widespread form of dependent data, and then turn to point processes, describing models for rare events in passing.

Markov Chains

In certain applications interest is focused on transitions among a small number of states. A simple example is rainfall modelling, where a sequence … 010011 … indicates whether or not it has rained each day. Another is in panel studies of employment, where many individuals are interviewed periodically about their employment status, which might be full-time, part-time, home-worker, unemployed, retired, and so forth. Here interest will generally focus on how variables such as age, education, family events, health, and changes in the job market affect employment history for each interviewee, so that there are many short sequences of state data taken at unequal intervals, unlike the single long rainfall sequence. In each case, however, the key aspect is that transitions occur amongst discrete states, even though these typically are crude summaries of reality.

Type
Chapter
Information
Statistical Models , pp. 225 - 299
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Stochastic Models
  • A. C. Davison, Swiss Federal Institute of Technology, Lausanne
  • Book: Statistical Models
  • Online publication: 29 March 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511815850.007
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Stochastic Models
  • A. C. Davison, Swiss Federal Institute of Technology, Lausanne
  • Book: Statistical Models
  • Online publication: 29 March 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511815850.007
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Stochastic Models
  • A. C. Davison, Swiss Federal Institute of Technology, Lausanne
  • Book: Statistical Models
  • Online publication: 29 March 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511815850.007
Available formats
×