Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T15:01:27.810Z Has data issue: false hasContentIssue false

13 - Randomization Does Not Justify Logistic Regression

Published online by Cambridge University Press:  05 June 2012

David Collier
Affiliation:
University of California, Berkeley
Jasjeet S. Sekhon
Affiliation:
University of California, Berkeley
Philip B. Stark
Affiliation:
University of California, Berkeley
Get access

Summary

Abstract. The logit model is often used to analyze experimental data. However, randomization does not justify the model, so the usual estimators can be inconsistent. A consistent estimator is proposed. Neyman's non-parametric setup is used as a benchmark. In this setup, each subject has two potential responses, one if treated and the other if untreated; only one of the two responses can be observed. Beside the mathematics, there are simulation results, a brief review of the literature, and some recommendations for practice.

Introduction

The logit model is often fitted to experimental data. As explained below, randomization does not justify the assumptions behind the model. Thus, the conventional estimator of log odds is difficult to interpret; an alternative will be suggested. Neyman's setup is used to define parameters and prove results. (Grammatical niceties apart, the terms “logit model” and “logistic regression” are used interchangeably.)

After explaining the models and estimators, we present simulations to illustrate the findings. A brief review of the literature describes the history and current usage. Some practical recommendations are derived from the theory. Analytic proofs are sketched at the end of the chapter.

Type
Chapter
Information
Statistical Models and Causal Inference
A Dialogue with the Social Sciences
, pp. 219 - 242
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×