Published online by Cambridge University Press: 06 November 2009
Mechanics provides a complete microscopic description of the state of a system. When the equations of motion are combined with initial conditions and boundary conditions, the subsequent time evolution of a classical system can be predicted. In systems with more than just a few degrees of freedom such an exercise is impossible. There is simply no practical way of measuring the initial microscopic state of, for example, a glass of water, at some instant in time. In any case, even if this was possible we could not then solve the equations of motion for a coupled system of 1023 molecules.
In spite of our inability to fully describe the microstate of a glass of water, we are all aware of useful macroscopic descriptions for such systems. Thermodynamics provides a theoretical framework for correlating the equilibrium properties of such systems. If the system is not at equilibrium, fluid mechanics is capable of predicting the macroscopic nonequilibrium behaviour of the system. In order for these macroscopic approaches to be useful, their laws must be supplemented, not only with a specification of the appropriate boundary conditions, but with the values of thermophysical constants such as equation-of-state data and transport coefficients. These values cannot be predicted by macroscopic theory.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.