Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Thermodynamics
- 2 Statistical Mechanics
- 3 Hydrodynamics
- 4 Stochastic Processes
- 5 Fluctuation Relations for Energy and Particle Fluxes
- 6 Path Probabilities, Temporal Disorder, and Irreversibility
- 7 Driven Brownian Particles and Related Systems
- 8 Effusion Processes
- 9 Processes in Dilute and Rarefied Gases
- 10 Fluctuating Chemohydrodynamics
- 11 Reactions
- 12 Active Processes
- 13 Transport in Hamiltonian Dynamical Models
- 14 Quantum Statistical Mechanics
- 15 Transport in Open Quantum Systems
- Appendix A Complements on Thermodynamics
- Appendix B Complements on Dynamical Systems Theory
- Appendix C Complements on Statistical Mechanics
- Appendix D Complements on Hydrodynamics
- Appendix E Complements on Stochastic Processes
- Appendix F Complements on Fluctuation Relations
- References
- Index
15 - Transport in Open Quantum Systems
Published online by Cambridge University Press: 14 July 2022
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Thermodynamics
- 2 Statistical Mechanics
- 3 Hydrodynamics
- 4 Stochastic Processes
- 5 Fluctuation Relations for Energy and Particle Fluxes
- 6 Path Probabilities, Temporal Disorder, and Irreversibility
- 7 Driven Brownian Particles and Related Systems
- 8 Effusion Processes
- 9 Processes in Dilute and Rarefied Gases
- 10 Fluctuating Chemohydrodynamics
- 11 Reactions
- 12 Active Processes
- 13 Transport in Hamiltonian Dynamical Models
- 14 Quantum Statistical Mechanics
- 15 Transport in Open Quantum Systems
- Appendix A Complements on Thermodynamics
- Appendix B Complements on Dynamical Systems Theory
- Appendix C Complements on Statistical Mechanics
- Appendix D Complements on Hydrodynamics
- Appendix E Complements on Stochastic Processes
- Appendix F Complements on Fluctuation Relations
- References
- Index
Summary
The multivariate fluctuation relation is established for the full counting statistics of the energy and particle fluxes across an open quantum system in contact with several reservoirs on the basis of microreversibility The quantum version of the nonequilibrium work fluctuation relation is recovered in the presence of a single reservoir. In the long-time limit, the time-reversal symmetry relation is expressed in terms of the cumulative generating function for the full counting statistics. In systems with independent particles, the symmetry relation can be obtained in the scattering approach for the transport of bosons and fermions. The temporal disorder and its time asymmetry can be characterized by the quantum version of the entropy and coentropy per unit time. Their difference gives the thermodynamic entropy production rate. Furthermore, the stochastic approach is also considered for electron transport in quantum dots, quantum point contacts, and single-electron transistors.
Keywords
- Type
- Chapter
- Information
- The Statistical Mechanics of Irreversible Phenomena , pp. 520 - 564Publisher: Cambridge University PressPrint publication year: 2022