Published online by Cambridge University Press: 14 July 2022
At the macroscale, thermodynamics rules the balances of energy and entropy. In nonisolated systems, the entropy changes due to the contributions from the internal entropy production, which is always nonnegative according to the second law, and the exchange of entropy with the environment. The entropy production is equal to zero at equilibrium and positive out of equilibrium. Thermodynamics can be formulated either locally for continuous media or globally for systems in contact with several reservoirs. Accordingly, the entropy production is expressed in terms of either the local or the global affinities and currents, the affinities being the thermodynamic forces driving the system away from equilibrium. Depending on the boundary and initial conditions, the system can undergo relaxation towards equilibrium or nonequilibrium stationary or time-dependent macrostates. As examples, thermodynamics is applied to diffusion, electric circuits, reaction networks, and engines.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.