Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T01:17:53.164Z Has data issue: false hasContentIssue false

13 - The number partitioning problem

Published online by Cambridge University Press:  25 January 2010

Anton Bovier
Affiliation:
Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
Get access

Summary

La pensée n'est qu'un éclair au millieu d'une longue nuit. Mais c'est cet éclair qui est tout.

Henri Poincaré, La valeur de la science.

With the Hopfield model we have seen that the range of applications of statistical mechanics goes beyond standard physics into biology and neuroscience. In recent years, many such extensions have been noted. A particularly lively area is that of combinatorial optimization, notably with applications to computer science. While I cannot cover this subject adequately, I will in this last chapter concentrate on possibly the simplest example, the number partitioning problem. The connection to statistical mechanics has been pointed out by S. Mertens, from whom I learned about this interesting problem.

Number partitioning as a spin-glass problem

The number partitioning problem is a classical optimization problem: Given N numbers n1, n2, …, nN, find a way of distributing them into two groups such that their sums in each group are as similar as possible. One can easily imagine that this problem occurs all the time in real life, albeit with additional complication: Imagine you want to stuff two moving boxes with books of different weights. You clearly have an interest in making both boxes more or less the same weight, so that neither of them is too heavy. In computing, you want to distribute a certain number of jobs on, say, two processors, in such a way that all of your processes are executed in the fastest way, etcClearly, the two examples indicate that the problem has a natural generalization to partitionings into more than two groups. What is needed in practice is an algorithm that, when presented with the N numbers, finds the optimal partitioning as quickly as possible.

Type
Chapter
Information
Statistical Mechanics of Disordered Systems
A Mathematical Perspective
, pp. 285 - 296
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The number partitioning problem
  • Anton Bovier, Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
  • Book: Statistical Mechanics of Disordered Systems
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616808.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The number partitioning problem
  • Anton Bovier, Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
  • Book: Statistical Mechanics of Disordered Systems
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616808.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The number partitioning problem
  • Anton Bovier, Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
  • Book: Statistical Mechanics of Disordered Systems
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616808.015
Available formats
×