Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T20:36:46.855Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  25 January 2010

Anton Bovier
Affiliation:
Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
Get access

Summary

L'analyse mathématique, n'est elle donc qu'un vain jeu d'esprit? Elle ne peut donner au physicien qu'un langage commode; n'est-ce pas là un médiocre service, dont on aurait pu se passer à la rigueur; et même n'est il pas à craindre que ce langage artificiel ne soit un voile interposé entre la réalité et l'œil du physicien? Loin de là, sans ce langage, la pluspart des analogies intimes des choses nous seraient demeurées à jamais inconnues; et nous aurions toujours ignoré l'harmonie interne du monde, qui est, nous le verrons, la seule véritable réalité objective.

Henri Poincaré, La valeur de la science.

Starting with the Newtonian revolution, the eighteenth and nineteenth centuries saw with the development of analytical mechanics an unprecedented tool for the analysis and prediction of natural phenomena. The power and precision of Hamiltonian perturbation theory allowed even the details of the motion observed in the solar system to be explained quantitatively. In practical terms, analytical mechanics made the construction of highly effective machines possible. Unsurprisingly, these successes led to the widespread belief that, ultimately, mechanics could explain the functioning of the entire universe. On the basis of this confidence, new areas of physics, outside the realm of the immediate applicability of Newtonian mechanics, became the target of the new science of theoretical (analytical) physics. One of the most important of these new fields was the theory of heat, or thermodynamics. One of the main principles of Newtonian mechanics was that of the conservation of energy. Now, such a principle could not hold entirely, due to the ubiquitous loss of energy through friction.

Type
Chapter
Information
Statistical Mechanics of Disordered Systems
A Mathematical Perspective
, pp. 3 - 8
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Anton Bovier, Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
  • Book: Statistical Mechanics of Disordered Systems
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616808.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Anton Bovier, Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
  • Book: Statistical Mechanics of Disordered Systems
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616808.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Anton Bovier, Technische Universität Berlin and Weierstraβ-Institut für Angewandte Analysis und Stochastik
  • Book: Statistical Mechanics of Disordered Systems
  • Online publication: 25 January 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616808.003
Available formats
×