Skip to main content Accessibility help
×
  • Cited by 3
  • Volume 52
  • Michael P. Fay, National Institute of Allergy and Infectious Diseases, Erica H. Brittain, National Institute of Allergy and Infectious Diseases

Book description

Fay and Brittain present statistical hypothesis testing and compatible confidence intervals, focusing on application and proper interpretation. The emphasis is on equipping applied statisticians with enough tools - and advice on choosing among them - to find reasonable methods for almost any problem and enough theory to tackle new problems by modifying existing methods. After covering the basic mathematical theory and scientific principles, tests and confidence intervals are developed for specific types of data. Essential methods for applications are covered, such as general procedures for creating tests (e.g., likelihood ratio, bootstrap, permutation, testing from models), adjustments for multiple testing, clustering, stratification, causality, censoring, missing data, group sequential tests, and non-inferiority tests. New methods developed by the authors are included throughout, such as melded confidence intervals for comparing two samples and confidence intervals associated with Wilcoxon-Mann-Whitney tests and Kaplan-Meier estimates. Examples, exercises, and the R package asht support practical use.

Awards

Finalist 2023 PROSE Mathematics and Statistics Award, Association of American Publishers

Reviews

‘A necessary book for the applied statistician seeking to understand the theoretical underpinnings of statistical methods and for graduate students knowledgeable about statistical theory but lacking experience in application. The book is chock full of challenging examples that point to the complexities of choice of method. A particularly valuable feature of the book is the authors’ description of competing methods coupled with their clarity in explaining and justifying why they prefer one method over others. Fay and Brittain should sit on every statistician’s bookshelf.’

Janet Wittes - WCG Statistics Collaborative

‘Good statistical hypothesis testing and confidence interval construction involves mathematical aspects of finding a good test given a probability model and scientific aspects of determining the appropriateness of a probability model for answering a scientific question. This book provides a lucid discussion of both these mathematical and scientific aspects with compelling scientific examples. I most highly recommend this book.’

Dylan Small - University of Pennsylvania

‘Congratulations to Fay and Brittain for this wonderful reference book that does what its somewhat unusual title suggests: puts hypothesis testing in the context of science. The vast coverage of topics, extensive bibliography and notes, and easy to understand explanations make ‘Statistical Hypothesis Testing in Context: Reproducibility, Inference, and Science’ an indispensable tool in the arsenal of any applied or theoretical statistician or biostatistician. I enthusiastically recommend buying the book!’

Michael A. Proschan - National Institute of Allergy and Infectious Diseases

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

  • 1 - Introduction
    pp 1-7

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.