Published online by Cambridge University Press: 04 February 2011
This chapter starts from the state of the art on particle mixing in spouted beds, as presented in the classical book by Mathur and Epstein. In subsequent years, segregation has been considered in fundamental studies aimed at describing real systems of various bed compositions.
Gross solids mixing behavior
The mixing properties of spouted beds result from interaction among the spout, fountain, and annulus. In a continuously operated unit, the positioning of the solids inlet port with respect to the discharge opening is of fundamental importance to prevent bypassing. Dead zones could arise from problematic solids circulation – for example, because of an incorrect base design. To prevent segregation, the simplest conceivable operating condition corresponds to a mono-sized particulate material and a single unit in which each particle undergoes many cycles before being discharged. In such cases and for continuous operation, the internal circulation far exceeds the net in-and-out flow of solids in all cases studied. The very different particle residence times in the spout (progressively loaded with solids along its height), in the fountain (where the particles have both axial and radial velocity components), and in the annulus (where particles travel downward in nearly plug flow) generate nearly well-mixed overall solids residence time distributions (RTDs).
Stimulus-response techniques have been applied to determine the RTD of particles. A typical downstream normalized tracer concentration at the discharge, called the F curve, generated in response to an upstream step input of colored particles, is given in Figure 8.1.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.