Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T06:19:12.061Z Has data issue: false hasContentIssue false

19 - The Island Species–Area Relationship: Rosenzweig’s Dinosaur Is Still Alive

from Part V - Future Directions in Species–Area Relationship Research

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

I am not aware of any other book that has shed so much light on species diversity patterns and generalities across time and space as has M. L. Rosenzweig’s (1995) Species diversity in space and time. Rosenzweig compared the study of species diversity patterns with a dinosaur that has come alive and is challenging us. He then listed 10 major challenges that we as ecologists and biogeographers have to address. Some of these are focused on arguably the most general pattern, and definitely one of the oldest known patterns, in nature, i.e. the species–area relationship (SAR). Rosenzweig, 25 years ago, was signifying that, regardless of the vast number of studies on SARs, we were still lacking, at his time of writing, a complete understanding of the pattern. All of the preceding chapters in this volume highlight the amount of progress that has been made since Rosenzweig’s book, the range of new methods and patterns that have been brought to light and the many new and insightful questions that have been asked; some have been answered, others still challenge us. Herein, I discuss issues related to the SAR that still require our attention, some of which have been noted in the preceding chapters.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 459 - 475
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, P. B. & Lauenroth, W. K. (2003) The power of time: Spatiotemporal scaling of species diversity. Ecology Letters, 6, 749756.Google Scholar
Adler, P. B., White, E. P., Lauenroth, W. K., Kaufman, D. M., Rassweiler, A. & Rasak, J. A. (2005) Evidence for a general species–time–area relationship. Ecology, 86, 20322039.Google Scholar
Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A., Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra, H. & Hoorn, C. (2018) Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718725.CrossRefGoogle Scholar
Borregaard, M. K., Matthews, T. J. & Whittaker, R. J. (2016) The general dynamic model: Towards a unified theory of island biogeography? Global Ecology & Biogeography, 25, 805816.CrossRefGoogle Scholar
Brown, J. H., Ernest, S. K. M., Parody, J. M. & Haskell, J. P. (2001) Regulation of diversity: Maintenance of species richness in changing environments. Oecologia, 126, 321332.CrossRefGoogle ScholarPubMed
Burns, K. C., McHardy, R. P. & Pledger, S. (2009) The small island effect: Fact or artefact? Ecography, 32, 269276.CrossRefGoogle Scholar
Cabral, J. S., Valente, L. & Hartig, F. (2017) Mechanistic models in macroecology and biogeography: State-of-art and prospects. Ecography, 40, 267280.CrossRefGoogle Scholar
Cabral, J. S., Weigelt, P., Kissling, W. D. & Kreft, H. (2014) Biogeographic, climatic and spatial drivers differentially affect alpha, beta and gamma diversities on oceanic archipelagos. Proceedings of the Royal Society B: Biological Sciences, 281, 20133246.Google Scholar
Cameron, R. A. D., Triantis, K. A., Parent, C. E., Guilhaumon, F., Alonso, M. R., Ibáñez, M., Martins, A. M. F., Ladle, R. J. & Whittaker, R. J. (2013) Snails on oceanic islands: Testing the general dynamic model of oceanic island biogeography using linear mixed effect models. Journal of Biogeography, 40, 117130.Google Scholar
Chase, J. M., Gooriah, L., May, F., Ryberg, W. A., Schuler, M. S., Craven, D. & Knight, T. M. (2019) A framework for disentangling ecological mechanisms underlying the island species–area relationship. Frontiers of Biogeography, 11, e40844.CrossRefGoogle Scholar
Connor, E. F. & McCoy, E. D. (1979) Statistics and biology of the species–area relationship. The American Naturalist, 113, 791833.Google Scholar
Darwin, C. R. (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.Google Scholar
Dengler, J. (2010) Robust methods for detecting a small island effect. Diversity and Distributions, 16, 256266.Google Scholar
Drakare, S., Lennon, J. J. & Hillebrand, H. (2006) The imprint of geographical, evolutionary and ecological context on species–area relationships. Ecology Letters, 9, 215227.Google Scholar
Fisher, R. A., Corbet, A. S. & Williams, C. B. (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology, 12, 4258.Google Scholar
Flather, C. H. (1996) Fitting species‐accumulation functions and assessing regional land use impacts on avian diversity. Journal of Biogeography, 23, 155168.Google Scholar
Gillespie, R. G. (2007) Oceanic islands: Models of diversity. Encyclopedia of biodiversity (ed. by Levin, S. A.), pp. 113. Oxford: Elsevier Ltd.Google Scholar
Hall, L. S., Krausman, P. R. & Morrison, M. L. (1997) The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 25, 173182.Google Scholar
Harmon, L. J. & Harrison, S. (2015) Species diversity is dynamic and unbounded at local and continental scales. The American Naturalist, 185, 584593.Google Scholar
Heaney, L. R. (2000) Dynamic equilibrium: A long-term, large-scale perspective on the equilibrium model of island biogeography. Global Ecology & Biogeography, 9, 5974.CrossRefGoogle Scholar
Holt, B. G., Lessard, J.-P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., Dimitrov, D., Fabre, P.-H., Graham, C. H., Graves, G. R., Jønsson, K. A., Nogués-Bravo, D., Wang, Z., Whittaker, R. J., Fjeldså, J. & Rahbek, C. (2013) An update of Wallace’s zoogeographic regions of the world. Science, 339, 7478.Google Scholar
Hortal, J., Triantis, K. A., Meiri, S., Thébault, E. & Sfenthourakis, S. (2009) Island species richness increases with habitat diversity. The American Naturalist, 174, E205E217.CrossRefGoogle ScholarPubMed
Hutchinson, G. E. (1959) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145159.CrossRefGoogle Scholar
Kisel, Y., McInnes, L., Toomey, N. H. & Orme, C. D. L. (2011) How diversification rates and diversity limits combine to create large‐scale species–area relationships. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 25142525.CrossRefGoogle ScholarPubMed
Liu, J., Matthews, T. J., Zhong, L., Liu, J., Wu, D. & Yu, M. (2020) Environmental filtering underpins the island species–area relationship in a subtropical anthropogenic archipelago. Journal of Ecology, 108, 424432.CrossRefGoogle Scholar
Lomolino, M. V. & Weiser, M. D. (2001) Towards a more general species–area relationship: Diversity on all islands, great and small. Journal of Biogeography, 28, 431445.Google Scholar
Looijen, R. C. (1995) On the distinction between habitat and niche, and some implications for species’ differentiation. Poznań Studies in the Philosophy of the Sciences and the Humanities, 45, 87108.Google Scholar
Losos, J. B. & Ricklefs, R. E. (2009) Adaptation and diversification on islands. Nature, 457, 830836.Google Scholar
Losos, J. B. & Schluter, D. (2000) Analysis of an evolutionary species–area relationship. Nature, 408, 847850.CrossRefGoogle ScholarPubMed
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Martín, H. G. & Goldenfeld, N. (2006) On the origin and robustness of power‐law species–area relationships in ecology. Proceedings of the National Academy of Sciences USA, 103, 1031010315.Google Scholar
Matthews, T. J., Borregaard, M. K., Guilhaumon, F., Triantis, K. A. & Whittaker, R. J. (2016) On the form of species–area relationships in habitat islands and true islands. Global Ecology & Biogeography, 25, 847858.CrossRefGoogle Scholar
Matthews, T. J., Rigal, F., Triantis, K. A. & Whittaker, R. J. (2019b) A global model of island species–area relationships. Proceedings of the National Academy of Sciences USA, 25, 1233712342.CrossRefGoogle Scholar
Matthews, T. J., Sadler, J. P., Kubota, Y., Woodall, C. W. & Pugh, T. A. M. (2019a) Systematic variation in North American tree species abundance distributions along macroecological climatic gradients. Global Ecology & Biogeography, 28, 601611.Google Scholar
Matthews, T. J., Triantis, K., Whittaker, R. J. & Guilhaumon, F. (2019c) sars: An R package for fitting, evaluating and comparing species–area relationship models. Ecography, 42, 14461455.CrossRefGoogle Scholar
McGlinn, D. J. & Palmer, M. W. (2009) Modeling the sampling effect in the species–time–area relationship. Ecology, 90, 836846.CrossRefGoogle ScholarPubMed
McGlinn, D. J., Xiao, X., May, F., Gotelli, N. J., Engel, T., Blowes, S. A., Knight, T. M., Purschke, O., Chase, O. J. M. & McGill, B. J. (2019) Measurement of Biodiversity (MoB): A method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution, 10, 258269.Google Scholar
Morrison, L. W. (2011) Why do some small islands lack vegetation? Evidence from long-term observations and introduction experiments. Ecography, 34, 384391.CrossRefGoogle Scholar
Newton, A. (1877) Hartlaub’s ‘Birds of Madagascar’. Nature, 17, 910.Google Scholar
Niering, W. A. (1956) Bioecology of Kapingamarangi Atoll. Caroline Islands: Terrestrial aspects. Atoll Research Bulletin, 49, 132.Google Scholar
Niering, W. A. (1963) Terrestrial ecology of Kapingamarangi Atoll, Caroline Islands. Ecological Monographs, 33, 131160.Google Scholar
Norder, S. J., Proios, K. V., Whittaker, R. J., Alonso, M. R., Borges, P. A. V., Borregaard, M. K., Cowie, R. H., Florens, F. B. V., de Frias Martins, A. M., Ibáñez, M., Kissling, W. D., de Nascimento, L., Otto, R., Parent, C. E., Rigal, F., Warren, B. H., Fernández-Palacios, J. M., van Loon, E. E., Triantis, K. A. & Rijsdijk, K. F. (2019) Beyond the Last Glacial Maximum: Island endemism is best explained by long-lasting archipelago configurations. Global Ecology & Biogeography, 28, 184197.Google Scholar
Pigolotti, S. & Cencini, M. (2009) Speciation-rate dependence in species–area relationships. Journal of Theoretical Biology, 260, 8389.Google Scholar
Preston, F. W. (1960) Time and space and the variation of species. Ecology, 41, 611627.CrossRefGoogle Scholar
Preston, F. W. (1962) The canonical distribution of commonness and rarity: Part I. Ecology, 43, 185215.Google Scholar
Rabosky, D. L. (2013) Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annual Review of Ecology, Evolution, and Systematics, 44, 481502.Google Scholar
Rabosky, D. L. & Glor, R. E. (2010) Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proceedings of the National Academy of Sciences USA, 107, 2217822183.Google Scholar
Rabosky, D. L. & Hurlbert, A. H. (2015) Species richness at continental scales is dominated by ecological limits. The American Naturalist, 185, 572583.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. New York: Cambridge University Press.Google Scholar
Rosenzweig, M. L. (1998) Preston’s ergodic conjecture: The accumulation of species in space and time. Biodiversity dynamics: Turnover of populations, taxa, and communities (ed. by McKinney, M. L. and Drake, J. A.), pp. 311348. New York: Columbia University Press.Google Scholar
Rosenzweig, M. L. (2001) Loss of speciation rate will impoverish future diversity. Proceedings of the National Academy of Sciences USA, 98, 54045410.Google Scholar
Santos, A. M. C., Whittaker, R. J., Triantis, K. A., Jones, O. R., Borges, P. A. V., Quicke, D. L. J. & Hortal, J. (2010) Are species–area relationships from entire archipelagos congruent with those of their constituent islands? Global Ecology & Biogeography, 19, 527540.Google Scholar
Scheiner, S. M. (2003) Six types of species‐area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Schrader, J., Moeljono, S., Keppel, G. & Kreft, H. (2019) Plants on small islands revisited: The effects of spatial scale and habitat quality on the species–area relationship. Ecography, 42, 14051414.Google Scholar
Sfenthourakis, S. & Triantis, K. A. (2017) The Aegean archipelago: A natural laboratory of evolution, ecology and civilizations. Journal of Biological Research-Thessaloniki, 24, 113.Google Scholar
Shmida, A. & Wilson, M. V. (1985) Biological determinants of species diversity. Journal of Biogeography, 12, 120.Google Scholar
Song, X., Holt, R. D., Si, X., Christman, M. C. & Ding, P. (2018) When the species–time–area relationship meets island biogeography: Diversity patterns of avian communities over time and space in a subtropical archipelago. Journal of Biogeography, 45, 664675.CrossRefGoogle Scholar
Stein, A., Gerstner, K. & Kreft, H. (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866880.Google Scholar
Storch, D., Marquet, P. A. & Brown, J. H. (eds.) (2007) Scaling biodiversity. Cambridge: Cambridge University Press.Google Scholar
Tjørve, E. (2003) Shapes and functions of species–area curves: A review of possible models. Journal of Biogeography, 30, 827835.CrossRefGoogle Scholar
Tjørve, E. (2009) Shapes and functions of species–area curves (II): A review of new models and parameterizations. Journal of Biogeography, 36, 14351445.Google Scholar
Tjørve, E. & Tjørve, K. M. C. (2011) Subjecting the theory of the small‐island effect to Ockham’s razor. Journal of Biogeography, 38, 18361839.Google Scholar
Triantis, K. A. & Sfenthourakis, S. (2012) Island biogeography is not a single-variable discipline: The small island effect debate. Diversity and Distributions, 18, 9296.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Triantis, K. A., Mylonas, M., Lika, K. & Vardinoyannis, K. (2003) A model for the species–area–habitat relationship. Journal of Biogeography, 30, 1927.Google Scholar
Triantis, K. A., Mylonas, M. & Whittaker, R. J. (2008) Evolutionary species–area curves as revealed by single‐island endemics: Insights for the interprovincial species–area relationship. Ecography, 31, 401407.Google Scholar
Triantis, K. A., Economo, E. P., Guilhaumon, F. & Ricklefs, R. E. (2015) Diversity regulation at macro-scales: Species richness on oceanic archipelagos. Global Ecology & Biogeography, 24, 594605.Google Scholar
Triantis, K. A., Vardinoyannis, K., Tsolaki, E. P., Botsaris, I., Lika, K. & Mylonas, M. (2006) Re‐approaching the small island effect. Journal of Biogeography, 33, 914923.Google Scholar
Udvardy, M. F. D. (1959) Notes on the ecological concepts of habitat, biotope and niche. Ecology, 40, 725728.Google Scholar
Ulrich, W., Ollik, M. & Ugland, K. I. (2010) A meta-analysis of species–abundance distributions. Oikos, 119, 11491155.CrossRefGoogle Scholar
Valente, L., Illera, J. C., Havenstein, K., Pallien, T., Etienne, R. S. & Tiedemann, R. (2017) Equilibrium bird species diversity in Atlantic islands. Current Biology, 27, 16601666.Google Scholar
Wallace, A. R. (1876) The geographical distribution of animals: With a study of the relations of living and extinct faunas Volume 1. Cambridge: Cambridge University Press.Google Scholar
Wallace, A. R. (1877) The comparative richness of faunas and floras tested numerically. Nature, 17, 100101.Google Scholar
Wang, Y., Chen, C. & Millien, V. (2018) A global synthesis of the small‐island effect in habitat islands. Proceedings of the Royal Society B: Biological Sciences, 285, 20181868.Google Scholar
Wang, Y., Millien, V. & Ding, P. (2016) On empty islands and the small‐island effect. Global Ecology & Biogeography, 25, 13331345.Google Scholar
Weigelt, P. & Kreft, H. (2013) Quantifying island isolation – insights from global patterns of insular plant species richness. Ecography, 36, 417429.Google Scholar
Weigelt, P., Jetz, W. & Kreft, H. (2013) Bioclimatic and physical characterization of the World’s islands. Proceedings of the National Academy of Sciences USA, 110, 1530715312.Google Scholar
White, E. P. (2007) Spatiotemporal scaling of species richness: Patterns, processes, and implications. Scaling biodiversity (ed. by Storch, D., Marquet, P. A. and Brown, J. H.), pp. 325346. Cambridge: Cambridge University Press.Google Scholar
White, E. P., Adler, P. B., Lauenroth, W. K., Gill, R. A., Greenberg, D., Kaufman, D. M., Rassweiler, A., Rusak, J. A., Smith, M. D., Steinbeck, J. R., Waide, R. B. & Yao, J. (2006) A comparison of the species–time relationship across ecosystems and taxonomic groups. Oikos, 112, 185195.Google Scholar
Whittaker, R. J. & Fernández-Palacios, J. M. (2007) Island biogeography: Ecology, evolution, and conservation, 2nd ed. Oxford: Oxford University Press.Google Scholar
Whittaker, R. J., Triantis, K. A. & Ladle, R. J. (2008) A general dynamic theory of oceanic island biogeography. Journal of Biogeography, 35, 977994.Google Scholar
Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. (2017) Island biogeography: Taking the long view of nature’s laboratories. Science, 357, eaam8326.Google Scholar
Williams, C. B. (1943) Area and number of species. Nature, 152, 264267.Google Scholar
Williams, M. R., Lamont, B. B. & Henstridge, J. D. (2009) Species–area functions revisited. Journal of Biogeography, 36, 19942004.Google Scholar
Williamson, M. (1988) Relationship of species number to area, distance and other variables. Analytical biogeography (ed. by Myers, A. A. and Giller, P. S.), pp. 91115. New York: Chapman & Hall.Google Scholar
Wright, D. H. (1983) Species–energy theory: An extension of species–area theory. Oikos, 41, 496506.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×