Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T23:13:42.871Z Has data issue: false hasContentIssue false

5 - Functional and Phylogenetic Diversity–Area Relationships

from Part II - Diversity–Area Relationships: The Different Types and Underlying Factors

Published online by Cambridge University Press:  11 March 2021

Thomas J. Matthews
Affiliation:
University of Birmingham
Kostas A. Triantis
Affiliation:
National and Kapodistrian University of Athens
Robert J. Whittaker
Affiliation:
University of Oxford
Get access

Summary

The species–area relationship (SAR) has been documented for a wide range of organisms, ecosystems and spatial scales. In contrast, little is known about the spatial scaling of functional and phylogenetic diversity, two other important facets of biodiversity. Describing and understanding how functional and phylogenetic diversity scale with area represents a promising research programme to unravel community assembly mechanisms across spatial scales, and to predict the loss of functional and phylogenetic diversity from habitat loss. In this review, our aim is to provide (1) practical recommendations to measure functional and phylogenetic diversity and to construct functional and phylogenetic diversity–area relationships, (2) a theoretical background on how to interpret the shape of phylogenetic diversity–area relationships and (3) an overview of the empirical phylogenetic diversity–area relationships published to date. We conclude by proposing a series of recommendations for future work.

Type
Chapter
Information
The Species–Area Relationship
Theory and Application
, pp. 107 - 132
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cadotte, M. W. & Tucker, C. M. (2017) Should environmental filtering be abandoned? Trends in Ecology & Evolution, 32, 429437.CrossRefGoogle ScholarPubMed
Cadotte, M. W., Carscadden, K. & Mirotchnick, N. (2011) Beyond species: Functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology, 48, 10791087.Google Scholar
Carscadden, K. A., Cadotte, M. W. & Gilbert, B. (2017) Trait dimensionality and population choice alter estimates of phenotypic dissimilarity. Ecology and Evolution, 7, 22732285.Google Scholar
Carvajal-Endara, S., Hendry, A. P., Emery, N. C. & Davies, T. J. (2017) Habitat filtering not dispersal limitation shapes oceanic island floras: Species assembly of the Galápagos archipelago. Ecology Letters, 20, 495504.CrossRefGoogle Scholar
Cavender-Bares, J., Keen, A. & Miles, B. (2006) Phylogenetic structure of floridian plant communities depends on taxonomic and spatial scale. Ecology, 87, S109S122.Google Scholar
Chao, A., Chiu, C.-H. & Jost, L. (2010) Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 35993609.CrossRefGoogle ScholarPubMed
Chase, J. M., Amarasekare, P., Cottenie, K., Gonzalez, A., Holt, R. D., Holyoak, M., Hoopes, M. F., Leibold, M. A., Loreau, M., Mouquet, N., Shurin, J. B. & Tilman, D. (2005) Competing theories for competitive metacommunities. Metacommunities: Spatial dynamics and ecological communities (ed. by Holyoak, M., Leibold, M. A. and Holt, R. D.), pp. 335354. Chicago, IL: University of Chicago Press.Google Scholar
Chesson, P. (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343366.CrossRefGoogle Scholar
Cianciaruso, M. V., Silva, I. A., Batalha, M. A., Gaston, K. J. & Petchey, O. L. (2012) The influence of fire on phylogenetic and functional structure of woody savannas: Moving from species to individuals. Perspectives in Plant Ecology, Evolution and Systematics, 14, 205216.Google Scholar
Cornwell, W. K., Schwilk, D. W., Ackerly, D. D. & Schwilk, L. (2006) A trait-based test for habitat filtering: Convex hull volume. Ecology, 87, 14651471.CrossRefGoogle ScholarPubMed
de Bello, F., Lavorel, S., Lavergne, S., Albert, C. H., Boulangeat, I., Mazel, F. & Thuiller, W. (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography, 36, 393402.CrossRefGoogle Scholar
Ding, Z., Feeley, K. J., Wang, Y., Pakeman, R. J. & Ding, P. (2013) Patterns of bird functional diversity on land-bridge island fragments. Journal of Animal Ecology, 82, 781790.Google Scholar
Faith, D. P. (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 110.CrossRefGoogle Scholar
Felsenstein, J. (2004) Inferring phylogenies. Sunderland, MA: Sinauer.Google Scholar
Ficetola, G. F., Mazel, F. & Thuiller, W. (2017) Global determinants of zoogeographical boundaries. Nature Ecology & Evolution, 1, 0089.Google Scholar
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. (2015) Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Functional Ecology, 29, 600614.Google Scholar
Gotelli, N. J. (2001) Research frontiers in null model analysis. Global Ecology & Biogeography, 10, 337343.CrossRefGoogle Scholar
He, F. & Hubbell, S. P. (2011) Species–area relationships always overestimate extinction rates from habitat loss. Nature, 473, 368371.Google Scholar
Helmus, M. R. & Ives, A. R. (2012) Phylogenetic diversity–area curves. Ecology, 91, 3143.Google Scholar
Hill, M. O. (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54, 427432.Google Scholar
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43, 227248.Google Scholar
Hubbell, S. P. (2001) The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Kadmon, R. & Allouche, O. (2007) Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: A unification of island biogeography and niche theory. The American Naturalist, 170, 443454.CrossRefGoogle ScholarPubMed
Karadimou, E. K., Kallimanis, A. S., Tsiripidis, I. & Dimopoulos, P. (2016) Functional diversity exhibits a diverse relationship with area, even a decreasing one. Scientific Reports, 6, 35420.CrossRefGoogle Scholar
Keil, P., Storch, D. & Jetz, W. (2015) On the decline of biodiversity due to area loss. Nature Communications, 6, 8837.Google Scholar
Kelly, S., Grenyer, R. & Scotland, R. W. (2014) Phylogenetic trees do not reliably predict feature diversity. Diversity and Distributions, 20, 600612.Google Scholar
Kraft, N. J. B., Adler, P. B., Godoy, O., James, E. C., Fuller, S. & Levine, J. M. (2015a) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592599.Google Scholar
Kraft, N. J. B., Godoy, O. & Levine, J. M. (2015b) Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences USA, 112, 797802.Google Scholar
Kraft, N. J. B., Valencia, R. & Ackerly, D. D. (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580582.Google Scholar
Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299305.Google Scholar
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.-P., Garden, D., Girel, J., Pellet, G. & Douzet, R. (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. Journal of Ecology, 99, 135147.Google Scholar
Lawton, J. H. (1999) Are there general laws in ecology? Oikos, 84, 177192.Google Scholar
Leibold, M. A. & Chase, J. M. (2018) Metacommunity ecology. Princeton, NJ: Princeton University Press.Google Scholar
Lessard, J.-P., Belmaker, J., Myers, J. A., Chase, J. M. & Rahbek, C. (2012a) Inferring local ecological processes amid species pool influences. Trends in Ecology & Evolution, 27, 600607.Google Scholar
Lessard, J.-P., Borregaard, M. K., Fordyce, J. A., Rahbek, C. & Sanders, N. J. (2012b) Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings of the Royal Society B: Biological Sciences, 279, 266274.Google Scholar
Li, D., Monahan, W. B. & Baiser, B. (2018) Species richness and phylogenetic diversity of native and non-native species respond differently to area and environmental factors. Diversity and Distributions, 24, 853864.Google Scholar
Loreau, M. (2010) Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 4960.Google Scholar
Louca, S., Parfrey, L. W. & Doebeli, M. (2016) Decoupling function and taxonomy in the global ocean microbiome. Science, 353, 12721277.Google Scholar
MacArthur, R. H. & Levins, R. (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377385.Google Scholar
MacArthur, R. H. & Wilson, E. O. (1967) The theory of island biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Matthews, T. J., Triantis, K. A., Rigal, F., Borregaard, M. K., Guilhaumon, F. & Whittaker, R. J. (2016) Island species–area relationships and species accumulation curves are not equivalent: An analysis of habitat island datasets. Global Ecology & Biogeography, 25, 607618.CrossRefGoogle Scholar
Matthews, T. J., Triantis, K. A., Whittaker, R. J. & Guilhaumon, F. (2019) sars: An R package for fitting, evaluating and comparing species–area relationship models. Ecography, 42, 14461455.Google Scholar
Mayfield, M. & Levine, J. (2010) Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 10851093.Google Scholar
Mazel, F., Davies, T. J., Gallien, L., Renaud, J., Groussin, M., Münkemüller, T. & Thuiller, W. (2016) Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography, 39, 913920.CrossRefGoogle ScholarPubMed
Mazel, F., Guilhaumon, F., Mouquet, N., Devictor, V., Gravel, D., Renaud, J., Cianciaruso, M. V., Loyola, R., Diniz-Filho, J. A. F., Mouillot, D. & Thuiller, W. (2014) Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Global Ecology & Biogeography, 23, 836847.Google Scholar
Mazel, F., Mooers, A. O., Riva, G. V. D. & Pennell, M. W. (2017b) Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Systematic Biology, 66, 10191027.Google Scholar
Mazel, F., Pennell, M. W., Cadotte, M. W., Diaz, S., Dalla Riva, G. V., Grenyer, R., Leprieur, F., Mooers, A. O., Mouillot, D., Tucker, C. M. & Pearse, W. D. (2018) Prioritizing phylogenetic diversity captures functional diversity unreliably. Nature Communications, 9, 2888.Google Scholar
Mazel, F., Pennell, M. W., Cadotte, M. W., Diaz, S., Dalla Riva, G. V., Grenyer, R., Leprieur, F., Mooers, A. O., Mouillot, D., Tucker, C. M. & Pearse, W. D. (2019) Reply to ‘Global conservation of phylogenetic diversity captures more than just functional diversity’. Nature Communications, 10, 859.Google Scholar
Mazel, F., Renaud, J., Guilhaumon, F., Mouillot, D., Gravel, D. & Thuiller, W. (2015) Mammalian phylogenetic diversity–area relationships at a continental scale. Ecology, 96, 28142822.Google Scholar
Mazel, F., Wüest, R. O., Gueguen, M., Renaud, J., Ficetola, G. F., Lavergne, S. & Thuiller, W. (2017a) The geography of ecological niche evolution in mammals. Current Biology, 27, 13691374.CrossRefGoogle ScholarPubMed
Miller, E. T., Farine, D. R. & Trisos, C. H. (2016) Phylogenetic community structure metrics and null models: A review with new methods and software. Ecography, 40, 461477.CrossRefGoogle Scholar
Morlon, H., Schwilk, D. W., Bryant, J. A., Marquet, P. A., Rebelo, A. G., Tauss, C., Bohannan, B. J. M. & Green, J. L. (2011) Spatial patterns of phylogenetic diversity. Ecology Letters, 14, 141149.Google Scholar
Mouchet, M. A., Villéger, S., Mason, N. W. H. & Mouillot, D. (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867876.Google Scholar
Münkemüller, T., Gallien, L., Lavergne, S., Renaud, J., Roquet, C., Abdulhak, S., Dullinger, S., Garraud, L., Guisan, A., Lenoir, J., Svenning, J.-C., Van Es, J., Vittoz, P., Willner, W., Wohlgemuth, T., Zimmermann, N. E. & Thuiller, W. (2014) Scale decisions can reverse conclusions on community assembly processes. Global Ecology & Biogeography, 23, 620632.CrossRefGoogle ScholarPubMed
Narwani, A., Alexandrou, M. A., Oakley, T. H., Carroll, I. T. & Cardinale, B. J. (2013) Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae. Ecology Letters, 16, 13731381.Google Scholar
Nee, S. & May, R. M. (1997) Extinction and the loss of evolutionary history. Science, 288, 328330.Google Scholar
Pavoine, S. & Bonsall, M. B. (2011) Measuring biodiversity to explain community assembly: A unified approach. Biological Reviews, 86, 792812.Google Scholar
Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. (2009) On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos, 118, 391402.Google Scholar
Petchey, O. L. & Gaston, K. J. (2007) Dendrograms and measuring functional diversity. Oikos, 116, 14221426.Google Scholar
Rao, R. C. (1982) Diversity and dissimilarity coefficients: A unified approach. Theoretical Population Biology, 21, 2443.Google Scholar
Rosenzweig, M. L. (1995) Species diversity in space and time. Cambridge: Cambridge University Press.Google Scholar
Rosindell, J. & Cornell, S. J. (2007) Species–area relationships from a spatially explicit neutral model in an infinite landscape. Ecology Letters, 10, 586595.Google Scholar
Scheiner, S. M. (2003) Six types of species–area curves. Global Ecology & Biogeography, 12, 441447.Google Scholar
Shen, G., Yu, M., Hu, X.-S., Mi, X., Ren, H., Sun, I.-F. & Ma, K. (2009) Species–area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology, 90, 30333041.Google Scholar
Smith, A. B., Sandel, B., Kraft, N. J. B. & Carey, S. (2013) Characterizing scale-dependent community assembly using the functional-diversity–area relationship. Ecology, 94, 23922402.Google Scholar
Swenson, N. G., Enquist, B. J., Pither, J., Thompson, J. & Zimmerman, J. K. (2006) The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 24182424.Google Scholar
Triantis, K. A., Guilhaumon, F. & Whittaker, R. J. (2012) The island species–area relationship: Biology and statistics. Journal of Biogeography, 39, 215231.Google Scholar
Tucker, C., Cadotte, M. W., Carvalho, S. B., Davies, J. T., Ferrier, S., Fritz, S., Grenyer, R., Helmus, M. R., Jin, L., Mooers, A. O., Pavoine, S., Purschke, O., Redding, D. W., Rosauer, D., Winter, M. & Mazel, F. (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 92, 698715.Google Scholar
Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. (1991) What to protect? – Systematics and the agony of choice. Biological Conservation, 55, 235254.Google Scholar
Vellend, M. (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183206.Google Scholar
Venail, P., Gross, K., Oakley, T. H., Narwani, A., Allan, E., Flombaum, P., Isbell, F., Joshi, J., Reich, P. B., Tilman, D., van Ruijven, J. & Cardinale, B. J. (2015) Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Functional Ecology, 29, 615626.Google Scholar
Villéger, S., Maire, E. & Leprieur, F. (2017) On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecology Letters, 20, 554557.Google Scholar
Villéger, S., Mason, N. & Mouillot, D. (2008) New multidimensional functional diversity indices for a multifaceted framwork in functional ecology. Ecology, 89, 22902301.Google Scholar
Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I. & Garnier, E. (2007) Let the concept of trait be functional! Oikos, 116, 882892.Google Scholar
Wagner, C. E., Harmon, L. J. & Seehausen, O. (2014) Cichlid species–area relationships are shaped by adaptive radiations that scale with area. Ecology Letters, 17, 583592.Google Scholar
Wallace, A. (1876) The geographical distribution of animals. Cambridge: Cambridge University Press.Google Scholar
Wang, X., Swenson, N. G., Wiegand, T., Wolf, A., Howe, R., Lin, F., Ye, J., Yuan, Z., Shi, S., Bai, X., Xing, D. & Hao, Z. (2013) Phylogenetic and functional diversity area relationships in two temperate forests. Ecography, 36, 883893.CrossRefGoogle Scholar
Warren, D. L., Cardillo, M., Rosauer, D. F. & Bolnick, D. I. (2014) Mistaking geography for biology: Inferring processes from species distributions. Trends in Ecology & Evolution, 29, 572580.Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. (2002) Phylogenies and community ecology. Annual Review of Ecology, Evolution, and Systematics, 33, 475505.CrossRefGoogle Scholar
Weiher, E. & Keddy, P. A. (1995) Assembly rules, null models, and trait dispersion: New questions from old patterns. Oikos, 74, 159164.Google Scholar
Weiher, E. & Keddy, P. A. (eds.) (1999) Ecological assembly rules: Perspectives, advances, retreats. Cambridge: Cambridge University Press.Google Scholar
White, H. J., Montgomery, W. I., Pakeman, R. J. & Lennon, J. J. (2018) Spatiotemporal scaling of plant species richness and functional diversity in a temperate semi-natural grassland. Ecography, 41, 845856.Google Scholar
Whittaker, R. J., Rigal, F., Borges, P. A. V., Cardoso, P., Terzopoulou, S., Casanoves, F., Pla, L., Guilhaumon, F., Ladle, R. J. & Triantis, K. A. (2014) Functional biogeography of oceanic islands and the scaling of functional diversity in the Azores. Proceedings of the National Academy of Sciences USA, 111, 1370913714.Google Scholar
Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Groom, P. K., Hikosaka, K., Lee, W., Lusk, C. H., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Warton, D. I. & Westoby, M. (2005) Modulation of leaf economic traits and trait relationships by climate. Global Ecology & Biogeography, 14, 411421.Google Scholar
Zhang, H., Chen, H. Y. H., Lian, J., John, R., Ronghua, L., Liu, H., Ye, W., Berninger, F. & Ye, Q. (2018) Using functional trait diversity patterns to disentangle the scale-dependent ecological processes in a subtropical forest. Functional Ecology, 32, 13791389.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×