Published online by Cambridge University Press: 11 May 2010
Solutions of the Navier-Stokes equation are computed in a deep, incompressible, spherical shell, including a parametrization of the Reynolds stresses arising from anisotropic turbulence. Thus the purely dynamical problem has solutions with marked differential rotation. The critical dynamo number for the onset of dynamo action is determined for different hydrodynamic models for both axisymmetric and nonaxisymmetric magnetic fields.
INTRODUCTION
Although kinematic dynamo models reveal some of the basic features of Solar and stellar magnetic fields, a fully satisfactory model must allow the dynamics to emerge as part of the solution of the governing system of equations. This has been attempted in a number of mean-field studies starting with Proctor (1977). It has been shown that solutions exist in which axisymmetric fields become saturated at a finite energy by the action of the macroscopic Lorentz force acting on the fluid.
The mean-field formalism is used in turbulent convection zones to parametrise the effects of the small scale dynamics on the magnetic field (Steenbeck et al. 1966). The influence of the small-scale turbulence on the macroscopic motions can be similarly modelled by the ‘Λ-effect’, representing the Reynolds stresses of anisotropic turbulence induced in a rotating, stratified medium (Rudiger 1989). The resulting mean-field equations describe the evolution of quantities averaged over time or length scales greater than those of the turbulence.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.