5 - Data Mining Essentials
from Part I - Essentials
Published online by Cambridge University Press: 05 July 2014
Summary
Mountains of raw data are generated daily by individuals on social media. Around 6 billion photos are uploaded monthly to Facebook, the blogosphere doubles every five months, 72 hours of video are uploaded every minute to YouTube, and there are more than 400 million daily tweets on Twitter. With this unprecedented rate of content generation, individuals are easily overwhelmed with data and find it difficult to discover content that is relevant to their interests. To overcome these challenges, we need tools that can analyze these massive unprocessed sources of data (i.e., raw data) and extract useful patterns from them. Examples of useful patterns in social media are those that describe online purchasing habits or individuals' website visit duration. Data mining provides the necessary tools for discovering patterns in data. This chapter outlines the general process for analyzing social media data and ways to use data mining algorithms in this process to extract actionable patterns from raw data.
The process of extracting useful patterns from raw data is known as Knowledge discovery in databases (KDD). It is illustrated in Figure 5.1. The KDD process takes raw data as input and provides statistically significant patterns found in the data (i.e., knowledge) as output. From the raw data, a subset is selected for processing and is denoted as target data. Target data is preprocessed to make it ready for analysis using data mining algorithm. Data mining is then performed on the preprocessed (and transformed) data to extract interesting patterns. The patterns are evaluated to ensure their validity and soundness and interpreted to provide insights into the data.
- Type
- Chapter
- Information
- Social Media MiningAn Introduction, pp. 105 - 138Publisher: Cambridge University PressPrint publication year: 2014