Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T01:08:44.638Z Has data issue: false hasContentIssue false

2 - Introducing the Common Shrew

Published online by Cambridge University Press:  01 March 2019

Jeremy B. Searle
Affiliation:
Cornell University, New York
P. David Polly
Affiliation:
Indiana University
Jan Zima
Affiliation:
Academy of Sciences of the Czech Republic, Prague
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bajkowska, U., Chętnicki, W., and Fedyk, S. (2009). Breeding of the common shrew, Sorex araneus, under laboratory conditions. Folia Zoologica, 58, 19.Google Scholar
Barnard, C. J. and Brown, C. A. J. (1981). Prey size selection and competition in the common shrew Sorex araneus. Behavioral Ecology and Sociobiology, 8, 239–43.Google Scholar
Bartkowska, K., Djavadian, R. L., Taylor, J. R. E., and Turlejski, K. (2008). Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla). European Journal of Neuroscience, 27, 1710–21.CrossRefGoogle ScholarPubMed
Bauer, K. (1960). Die Säugetiere des Neusiedlersee-Gebietes (Österreich). Bonner zoologische Beiträge, 11, 141344.Google Scholar
Bauerová, Z. (1984). The food eaten by Sorex araneus and Sorex minutus in a spruce monoculture. Folia Zoologica, 33, 125–32.Google Scholar
Beck, R. M. D. and Lee, M. S. Y. (2014). Ancient dates or accelerated rates? Morphological clocks and the antiquity of placental mammals. Proceedings of the Royal Society B, 281, 20141278.Google Scholar
Bennett, S. N., Gu, S. H., Kang, H. J., Arai, S., and Yanagihara, R. (2014). Reconstructing the evolutionary origins and phylogeography of hantaviruses. Trends in Microbiology, 22, 473–82.Google Scholar
Bielak, T. and Pucek, Z. (1960). Seasonal changes in the brain weight of the common shrew (Sorex araneus araneus Linnaeus, 1758). Acta Theriologica, 3, 297300.Google Scholar
Biltueva, L. and Vorobieva, N. (2012). Chromosome evolution in Eulipotyphla. Cytogenetic and Genome Research, 137, 154–64.Google Scholar
Bininda-Emonds, O. R. P., Beck, R. M. D., and MacPhee, R. D. (2012). Rocking clocks and clocking rocks: a critical look at divergence time estimation in mammals. In From Bone to Clone: the Synergy of Morphological and Molecular Tools in Palaeobiology, ed. Müller, R. J. and Asher, R. J.. Cambridge, UK: Cambridge University Press, pp. 3882.Google Scholar
Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., et al. (2007). The delayed rise of present-day mammals. Nature, 446, 507–12.Google Scholar
Binkiene, R., Kontrimavichus, V., and Hoberg, E. P. (2011). Overview of the cestode fauna of European shrews of the genus Sorex with comments on the fauna in Neomys and Crocidura and an exploration of historical processes in post-glacial Europe. Helminthologia, 48, 207–28.Google Scholar
Bobretzov, A. V. (2004). The common shrew. In Mammals of the Pechora-Ilych Nature Reserve, ed. Kuprianov, A. G.. Syktyvkar: Komi Book Publishing House, pp. 4664. (In Russian).Google Scholar
Bolshakov, V. N., Vasiliev, A. G., and Sharova, L. P. (1996). Fauna and Population Ecology of Shrews in the Urals (Mammalia, Soricidae). Ekaterinburg: Ekaterinburg Publishing House. (In Russian).Google Scholar
Borowski, S. (1958). Variation in density of coat during life cycle of Sorex araneus araneus L. Acta Theriologica, 2, 286–9.Google Scholar
Borowski, S. (1964). Moult of shrews (Sorex L.) under laboratory conditions. Acta Theriologica, 8, 125–35.Google Scholar
Borowski, S. (1968). On the moult of the common shrew. Acta Theriologica, 13, 483–98.CrossRefGoogle Scholar
Borowski, S. (1973). Variations in coat and colour in representatives of the genera Sorex L. and Neomys Kaup. Acta Theriologica, 18, 247–79.Google Scholar
Borowski, S. and Dehnel, A. (1952). Biology of the Soricidae. Annales Universitatis Mariae Curie-Skłodowska C, 7, 305–48. (In Polish, with English summary).Google Scholar
Bown, K. J., Lambin, X., Telford, G., et al. (2011). The common shrew (Sorex araneus): a neglected host of tick-borne infections? Vector-Borne and Zoonotic Diseases, 11, 947–53.Google Scholar
Brambell, F. W. R. (1935). Reproduction in the common shrew (Sorex araneus Linnaeus). I. The oestrous cycle of the female. II. Seasonal changes in the reproductive organs of the male. Philosophical Transactions of the Royal Society of London B, 225, 162.Google Scholar
Braniš, M. and Burda, H. (1994). Visual and hearing biology in shrews. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp.189200.Google Scholar
Bray, D. P., Bown, K. J., Stockley, P., et al. (2007). Haemoparasites of common shrews (Sorex araneus) in northwest England. Parasitology, 134, 819–26.Google Scholar
Buchalczyk, A. (1972). Seasonal variation in the activity of shrews. Acta Theriologica, 17, 221–43.Google Scholar
Buckner, C. H. (1969). Some aspects of the population ecology of the common shrew, S. araneus, near Oxford, England. Journal of Mammalogy, 50, 322–6.CrossRefGoogle Scholar
Burda, H. (1979). Morphology of the middle and inner ear in some species of shrews (Insectivora, Soricidae). Acta Scientiarium Naturalium Brno, 13, 146.Google Scholar
Burgin, C. J., Colella, J. P., Kahn, P. L., and Upham, N. S. (2018). How many species of mammals are there? Journal of Mammalogy, 99, 114.Google Scholar
Butler, P. M. (1972). The problem of insectivore classification. In Studies in Vertebrate Evolution, ed. Joysey, K. A. and Kemp, T. S.. Edinburgh: Oliver and Boyd, pp. 253–65.Google Scholar
Butler, P. M. (1988). Phylogeny of the insectivores. In The Phylogeny and Classification of the Tetrapods, vol. 2: Mammals, ed. Benton, M. J.. Oxford: Clarendon Press, Systematics Association Special Volume 35, pp. 117–41.Google Scholar
Butterfield, J., Coulson, J. C., and Wanless, S. (1981). Studies on the distribution, food, breeding biology and relative abundance of the pygmy and common shrews (Sorex minutus and S. araneus) in upland areas of northern England. Journal of Zoology, 195, 169–80.Google Scholar
Chętnicki, W., Fedyk, S., and Bajkowska, U. (2007). Cases of coat colour anomalies in the common shrew, Sorex araneus L. Folia Biologica (Kraków), 55, 73–6.Google ScholarPubMed
Churchfield, S. (1980a). Population dynamics and seasonal fluctuations in numbers of the common shrew in Britain. Acta Theriologica, 25, 451–9.Google Scholar
Churchfield, S. (1980b). Subterranean foraging and burrowing activity of the common shrew. Acta Theriologica, 25, 415–24.Google Scholar
Churchfield, S. (1981). Water and fat contents of British shrews and their role in seasonal changes in body weight. Journal of Zoology, 194, 165–73.Google Scholar
Churchfield, S. (1982a). The influence of temperature on the activity and food consumption of the common shrew. Acta Theriologica, 27, 295304.Google Scholar
Churchfield, S. (1982b). Food availability and the diet of the common shrew, Sorex araneus, in Britain. Journal of Animal Ecology, 51, 1528.Google Scholar
Churchfield, S. (1984). An investigation of the population ecology of syntopic shrews inhabiting water-cress beds. Journal of Zoology, 204, 229–40.Google Scholar
Churchfield, S. (1990). The Natural History of Shrews. London: Christopher Helm.Google Scholar
Churchfield, S. (1991). Niche dynamics, food resources, and feeding strategies in multispecies communities of shrews. In The Biology of Soricidae, ed. Findley, J. S. and Yates, T. L.. Albuquerque: University of New Mexico, pp. 23–4.Google Scholar
Churchfield, S. (1994). Foraging strategies of shrews and the evidence from field studies. In Advances in the Biology of Shrews, ed Merrit, J. F., Kirkland, G. L. Jr, and Rose, R. K., Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 7788.Google Scholar
Churchfield, S. and Brown, V. K. (1987). The trophic impact of small mammals in successional grasslands. Biological Journal of the Linnean Society, 31, 273–90.Google Scholar
Churchfield, S., Hollier, J., and Brown, V. K. (1991). The effects of small mammal predators on grassland invertebrates, investigated by field exclosure experiment. Oikos, 60, 283–90.Google Scholar
Churchfield, S., Hollier, J., and Brown, V. K. (1995). Population dynamics and survivorship patterns in the common shrew Sorex araneus in southern England. Acta Theriologica, 40, 5368.CrossRefGoogle Scholar
Churchfield, S., Hollier, J., and Brown, V.K. (1997a). Community structure and habitat use of small mammals in grasslands of different successional age. Journal of Zoology, 242, 519–30.Google Scholar
Churchfield, S., Rychlik, L., and Taylor, J. R. E. (2012). Food resources and foraging habits of the common shrew, Sorex araneus: does winter food shortage explain Dehnel’s phenomenon? Oikos, 121, 1593–602.CrossRefGoogle Scholar
Churchfield, S. and Searle, J. B. (2008). Common shrew. In Mammals of the British Isles. Handbook. 4th edn, ed. Harris, S. and Yalden, D.W.. London: The Mammal Society, pp. 257–65.Google Scholar
Churchfield, S. and Sheftel, B. I. (1994). Food niche overlap and ecological separation in a multi-species community of shrews in Siberian taiga. Journal of Zoology, 234, 105–24.Google Scholar
Churchfield, S., Sheftel, B. I., Moraleva, N. V., and Shvarts, E. A. (1997b). Habitat occurrence and prey distribution of a multi-species community of shrews in the Siberian taiga. Journal of Zoology, 241, 5571.Google Scholar
Cooke, J. A., Andrews, S. M., and Johnson, M. S. (1990). Lead, zinc, cadmium and fluoride in small mammals from contaminated grassland established on fluorpar tailing. Water, Air, and Soil Pollution, 51, 4354.Google Scholar
Croin Michielsen, N. (1966). Intraspecific and interspecific competition in the shrews Sorex araneus L. and S. minutus L. Archives Néerlandaises de Zoologie, 17, 73174.Google Scholar
Crowcroft, P. (1957). The Life of the Shrew. London: Max Reinhardt.Google Scholar
Crowcroft, P. (1964). Note on the sexual maturation of shrews (Sorex araneus Linnaeus, 1758) in captivity. Acta Theriologica, 8, 8993.Google Scholar
Crowcroft, W. P. (1955). Notes on the behaviour of shrews. Behaviour, 8, 6380.Google Scholar
Daniel, M., Mrciak, M., and Rosický, B. (1971). Location and composition of nests built by some central European insectivores and rodents in forest biotopes. Acta Facultatis Rerum Naturalium Universitatis Comeniae, Zoologia, 16, 136.Google Scholar
Dannelid, E. (1998). Dental adaptations in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 157–74.Google Scholar
Dehnel, A. (1949). Studies on the genus Sorex L. Annales Universitatis Mariae Curie-Skłodowska C, 4, 17102. (In Polish, with English summary).Google Scholar
Dehnel, A. (1952). The biology of breeding of common shrew Sorex araneus L. in laboratory conditions. Annales Universitatis Mariae Curie-Skłodowska C, 6, 359–76. (In Polish, with English summary).Google Scholar
Denneman, W. D. (1990). A comparison of the diet composition of two Sorex araneus populations under different heavy metal stress. Acta Theriologica, 35, 2538.CrossRefGoogle Scholar
Dickman, C. R. and Doncaster, C. P. (1987). The ecology of small mammals in urban habitats. I. Populations in a patchy environment. Journal of Animal Ecology, 56, 629–40.Google Scholar
Dodds-Smith, M. E., Johnson, M. S., and Thompson, D. J. (1992). Trace metal accumulation by the shrew Sorex araneus. I. Total body burden, growth and mortality. Ecotoxicology and Environmental Safety, 24, 102–17.Google Scholar
Dokuchaev, N. E., Emelyanova, L. G., and Orekhov, P. T. (2015). Shrews of the Nadym river basin (north of western Siberia). Contemporary Problems of Ecology, 8, 51–5.CrossRefGoogle Scholar
dos Reis, M., Donoghue, P. C., and Yang, Z. (2014). Neither phylogenomic nor palaeontological data support a Palaeogene origin of placental mammals. Biology Letters, 10, 20131003.Google Scholar
Dötsch, C. and von Koenigswald, W. (1978). Zur Rotfärbung von Soricidenzähnen. Zeitschrift für Säugetierkunde, 43, 6570.Google Scholar
Douady, C. J., Chatelier, P. I., Madsen, P., et al. (2002). Molecular phylogenetic evidence confirming the Eulipotyphla concept and in support of hedgehogs as the sister group to shrews. Molecular Phylogenetics and Evolution, 25, 200–9.Google Scholar
Dunajeva, T. N. (1955). Reproduction in the common shrew (Sorex araneus L.). Bulletin of the Moscow Society of Naturalists (MOIP), 60, 2843. (In Russian).Google Scholar
Dykova, I., Tyml, T., and Kostka, M. (2011). Xenoma-like formations induced by Soricimyxum fegati (Myxosporea) in three species of shrews (Soricomorpha: Soricidae), including new records of new hosts. Folia Parasitologica, 58, 249–56.Google Scholar
Ellenbroek, F. J. M. (1980). Interspecific competition in the shrews Sorex araneus and Sorex minutus (Soricidae, Insectivora): a population study of the Irish pygmy shrew. Journal of Zoology, 192, 119–36.CrossRefGoogle Scholar
Emerson, G. L., Kilpatrick, C. W., McNiff, B. E., Ottenwalder, J., and Allard, M. W. (1999). Phylogenetic relationships of the order Insectivora based on complete 12S rRNA sequences from mitochondria. Cladistics, 15, 221–30.Google Scholar
Feijoo, M. and Parada, A. (2017). Macrosystematics of eutherian mammals combining HTS data to expand taxon coverage. Molecular Phylogenetics and Evolution, 113, 7684.Google Scholar
Fivaz, F., Basset, P., Lugon-Moulin, N., and Hausser, J. (2003). Postglacial recolonization of the Valais (Switzerland) by the shrew Sorex antinorii: is dispersal sex-biased? A preliminary study. Mammalia, 67, 253–62.Google Scholar
Foley, N. M., Springer, M. S., and Teeling, E. (2016). Mammal madness: is the mammal tree of life not yet resolved? Philosophical Transactions of the Royal Society B, 371, 20150140.Google Scholar
Forsman, K. A. and Malmquist, M. G. (1988). Evidence for echolocation in the common shrew, Sorex araneus. Journal of Zoology, 216, 655–62.Google Scholar
Gaisler, J. (1983). The community of rodents and insectivores on the ridge of the Orlické hory Mts. in the ten years’ aspect. Folia Zoologica, 32, 241–57.Google Scholar
Gębczyński, M. (1965). Seasonal and age changes in the metabolism and activity of Sorex araneus Linnaeus, 1758. Acta Theriologica, 10, 303–31.Google Scholar
Gębczyński, M. (1966). Altersvariabilität des Metabolismus und der Aktivität bei Sorex araneus L. Lynx, 6, 41–4.Google Scholar
Gębczyński, M. (1971). Oxygen consumption in starving shrews. Acta Theriologica, 16, 288–92.Google Scholar
Gębczyński, M. (1977). Body temperature in five species of shrews. Acta Theriologica, 22, 521–30.Google Scholar
Gelling, M. (2003). Partial albinism in the common shrew Sorex araneus. Mammal Review, 33, 189–90.Google Scholar
Genoud, M. (1988). Energetic strategies in shrews: ecological constraints and evolutionary applications. Mammal Review, 18, 173–93.Google Scholar
Genoud, M. and Vogel, P. (1990). Energy requirements during reproduction and reproductive effort in shrews (Soricidae). Journal of Zoology, 220, 4160.CrossRefGoogle Scholar
George, S. B. (1988). Systematics, historical biogeography and evolution of the genus Sorex. Journal of Mammalogy, 69, 443–61.Google Scholar
Gliwicz, J. and Taylor, J. R. E. (2002). Comparing life histories of shrews and rodents. Acta Theriologica, 47, 185208.CrossRefGoogle Scholar
Glue, D. E. (1974). Food of barn owl in Britain and Ireland. Bird Study, 21, 200–10.Google Scholar
Gould, E. N., Negus, C., and Novick, A. (1964). Evidence for echolocation in shrews. Journal of Experimental Zoology, 156, 1938.Google Scholar
Hanski, I. (1984). Food consumption, assimilation and metabolic rate in six species of shrew (Sorex and Neomys). Annales Zoologici Fennici, 21, 157–65.Google Scholar
Hanski, I. (1986). Population dynamics of shrews on small islands accord with the equilibrium model. Biological Journal of the Linnean Society, 28, 2336.Google Scholar
Hanski, I. (1989). Population biology of Eurasian shrews: towards a synthesis. Annales Zoologici Fennici, 26, 469–79.Google Scholar
Hanski, I. (1994). Population biological consequence of body size in Sorex. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 1526.Google Scholar
Hanski, I., Peltonen, A., and Kaski, L. (1991). Natal dispersal and social dominance in the common shrew Sorex araneus. Oikos, 62, 4858.Google Scholar
Harris, A. H. (1998). Fossil history of shrews in North America. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 133–56.Google Scholar
Haukisalmi, V. (1989). Intestinal helminth communities of Sorex shrews in Finland. Annales Zoologici Fennici, 26, 401–9.Google Scholar
Haukisalmi, V., Henttonen, H., and Mikkonen, T. (1994). Parasitism of gastrointestinal helminths in the shrews Sorex araneus and S. caecutiens. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 97102.Google Scholar
Hausser, J., Hutterer, R., and Vogel, P. (1990). Sorex araneus Linnaeus, 1758 – Waldspitzmaus. In Handbuch der Säugetiere Europas, Band 3/1, ed. Niethammer, J. and Krapp, F.. Wiesbaden: Aula-Verlag, pp. 237–78.Google Scholar
Hawkins, A. E. and Jewell, P. A. (1962). Food consumption and energy requirements of captive British shrews and the mole. Proceedings of the Zoological Society of London, 138, 137–55.Google Scholar
Heikura, K. (1984). The population dynamics and the influence of winter in the common shrew (Sorex araneus L.). In Winter Ecology of Small Mammals, ed. Merritt, J. F.. Pittsburgh: Carnegie Museum of Natural History, Special Publication, pp. 343–61.Google Scholar
Hejlíček, K. and Literák, I. (1998). Long-term study of Toxoplasma gondii prevalence in small mammals (Insectivora and Rodentia). Folia Zoologica, 47, 93101.Google Scholar
Henttonen, H., Haukisalmi, V., Kaikusalo, A., et al. (1989). Long-term population dynamics of the common shrew Sorex araneus in Finland. Annales Zoologici Fennici, 26, 349–55.Google Scholar
Henttonen, H. and Kaikusalo, A. (1985). An additional note on albinism in Sorex araneus. Zeitschrift für Säugetierkunde, 50, 382.Google Scholar
Hitte, C., Madeoy, J., Kirkness, E. F., et al. (2005). Facilitating genome navigation: survey sequencing and dense radiation-hybrid gene mapping. Nature Reviews Genetics, 6, 643–8.Google Scholar
Holmes, E. C. and Zhang, Y. Z. (2015). The evolution and emergence of hantaviruses. Current Opinion in Virology, 10, 2733.CrossRefGoogle ScholarPubMed
Horáček, I. (1994). Mid-European fossil record of the Sorex araneus group. Folia Zoologica, 43 (Suppl. 1), 115.Google Scholar
Hubálek, Z., Rosický, B., and Otčenášek, M. (1980). Fungi from interior organs of free-living small mammals in Czechoslovakia and Yugoslavia. Folia Parasitologica, 27, 269–79.Google Scholar
Hunter, B. A. and Johnson, M. S. (1982). Food chain relationships of copper and cadmium in contaminated grassland ecosystem. Oikos, 38, 108–17.Google Scholar
Hunter, B. A., Johnson, M. S., and Thompson, D. J. (1987). Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. III. Small mammals. Journal of Applied Ecology, 24, 601–14.Google Scholar
Hůrka, L. (1986). Verbreitung, Fortpflanzung und biometrische Analyse der Population Sorex araneus (Insectivora: Soricidae) aus dem Gebiet des westliches Teiles der Tschechoslowakei. Folia Musei Rerum Naturalium Bohemiae Occidentalis, Zoologica, 23, 341.Google Scholar
Hutterer, R. (1977). Haltung und Lebensdauer von Spitzmäusen der Gattung Sorex (Mammalia, Insectivora). Zeitschrift für angewandte Zoologie, 64, 353–67.Google Scholar
Hutterer, R. (2005a). Order Soricomorpha. In Mammal Species of the World: a Taxonomic and Geographic Reference, ed. Wilson, D. E. and Reeder, D. M.. Baltimore: The Johns Hopkins University Press, pp. 220311.Google Scholar
Hutterer, R. (2005b). Homology of unicuspids and tooth nomenclature in shrews. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 397404.Google Scholar
Hyvärinen, H. (1969a). Seasonal changes in the activity of the thyroid gland and the wintering problem of the common shrew (Sorex araneus L.). Aquilo, Series Zoologica, 8, 30–5.Google Scholar
Hyvärinen, H. (1969b). Seasonal variation and distribution of alkaline phosphatase and glucose-6-phosphatase activity in the liver of the common shrew (Sorex araneus L.) and of the bank vole (Clethrionomus glareolus Schr.). Aquilo, Series Zoologica, 9, 44–9.Google Scholar
Hyvärinen, H. (1994). Brown fat and the wintering of shrews. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 259–66.Google Scholar
Hyvärinen, H. and Heikura, K. (1971). Effects of age and seasonal rhythm of the growth patterns of some small mammals in Finland and Kirkines, Norway. Journal of Zoology, 165, 545–56.Google Scholar
Ivanter, E. V. (1994). The structure and adaptive peculiarities of pelage in soricine shrews. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 441–54.Google Scholar
Ivanter, E. V., Ivanter, T. V., and Makarov, A. M. (1994). The territorial and demographic structures of a common shrew population. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 8996.Google Scholar
Ivanter, E. V. and Makarov, A. M. (1994). The spatial structure of shrew populations (Sorex, Insectivora) and its correlations with the feed biomass in communities. Zoologicheskii Zhurnal, 73, 124–38. (In Russian, with English summary).Google Scholar
Ivanter, E. V. and Makarov, A. M. (2001). Territorial Ecology of Red-Toothed Shrews (Insectivora, Sorex). Petrozavodsk: PetrGU. (In Russian).Google Scholar
Ivanter, E. V. and Makarov, A. M. (2005). Daily activity of the common shrew (Sorex araneus). In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 355–60.Google Scholar
Jánský, L. and Hanák, V. (1960). Studien über Kleinsäugerpopulationen in Südböhmen. II. Aktivität der Spitzmäuse unter natürlichen Bedingungen. Säugetierkundliche Mitteilungen, 8, 5563.Google Scholar
Kaikusalo, A. and Tast, J. (1994). Latitudinal variation in the life histories of Sorex araneus and S. caecutiens in Finland. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 113.Google Scholar
Kalinin, A. A. (2012). Residents and nonresidents in the total number of dominant small mammal species on the basis of data on live-traps. Zoologicheskii Zhurnal, 91, 759–68. (In Russian, with English summary).Google Scholar
Kalinin, A. A., Demidova, T. B., Oleinichenko, V. Y., and Shchipanov, N. A. (2008). Seasonal dynamics in numbers of red-toothed shrews (Insectivora, Soricidae). Zoologicheskii Zhurnal, 87, 218–25. (In Russian, with English summary).Google Scholar
Kalinin, A. A. and Kupriyanova, I. F. (2015). A technique for quantitative estimation of small mammals traversing water obstacles. Zoologicheskii Zhurnal, 94, 365–9. (In Russian, with English summary).Google Scholar
Kalinin, A. A. and Kupriyanova, I. F. (2016). Small mammals in food of European grayling (Thymallus thymallus, Thymallidae, Salmoniformes). Zoologicheskii Zhurnal, 95, 712–19. (In Russian, with English summary).Google Scholar
Kalinin, A. A. and Shchipanov, N. A. (2003). Density dependent behaviour in red-toothed shrews (Sorex araneus, S. caecutiens, and S. minutus) in wild and in experiment. Izvestia AN, Seria Biologicheskaia, 6, 689–97. (In Russian).Google Scholar
Kang, H. J., Arai, S., Hope, A. G., et al. (2009). Genetic diversity and phylogeography of Seewis virus in the Eurasian common shrew in Finland and Hungary. Virology Journal, 6, 208.Google Scholar
Kapischke, H.-J. (1976). Erstes Auftreten und frühe Geschlechtreife juveniler Waldspitzmäuse, Sorex araneus L. Milu, 4, 115.Google Scholar
Karaseva, E. V., Telitzina, A. Y., and Samoilov, B. N. (1999). Mammals of Moscow in the Past, Present and Future. Moscow: Nauka. (In Russian).Google Scholar
Karulin, B. E., Khlyap, L. A., Nikitina, N. A., et al. (1974). Activity and use of refuges in the common shrew (from observations on animals labelled with radioactive cobalt). Bulletin of the Moscow Society of Naturalists (MOIP), Biological Section, 1, 6572. (In Russian).Google Scholar
Kataržytė, M. and Kutorga, E. (2011). Small mammal mycophagy in hemiboreal forest communities of Lithuania. Central European Journal of Biology, 6, 446–56.Google Scholar
Kemp, T. S. (2005). The Origin and Evolution of Mammals. Oxford: Oxford University Press.Google Scholar
Khlyap, L. A. (1980). Shrews. In Approaches to Tracking of Mammals, ed. Sokolov, V. E.. Moscow: Nauka. pp. 6776. (In Russian).Google Scholar
Khlyap, L. A. (1989). Shrews (Soricidae) as hosts of causative agents of bacterial zoonotic human diseases. Zoologicheskii Zhurnal, 68, 8998. (In Russian, with English summary).Google Scholar
Khlyap, L. A., Karulin, B.E., and Nikitina, N.A. (1977). Daily range of the common shrew. Bulletin of the Moscow Society of Naturalists (MOIP), Biological Section, 81, 41–9. (In Russian).Google Scholar
Kisielewska, K. (1963). Food consumption and reproduction of Sorex araneus in the light of parasitological research. Acta Theriologica, 7, 127–53.Google Scholar
Klenovšek, T., Janžekovič, F., Novak, T., et al. (2013a). Notes on invertebrates preyed by shrews (Mammalia: Insectivora: Soricidae) in Slovenia. Annales Series Historia Naturalis, 23, 153–60.Google Scholar
Klenovšek, T., Novak, T., Cas, M., Trilar, T., and Janžekovič, F. (2013b). Feeding ecology of three sympatric Sorex shrew species in montane forests of Slovenia. Folia Zoologica, 62, 193–9.Google Scholar
Klok, C. and De Roos, A. M. (1998). Effects of habitat size and quality on equilibrium density and extinction time of Sorex araneus populations. Journal of Animal Ecology, 67, 195209.Google Scholar
Kollars, T. M. Jr (1995). Home ranges and population densities of shrews (Soricidae) inhabiting a spruce plantation in Bavaria, Germany. Acta Theriologica, 40, 219–22.Google Scholar
Korpimäki, E. and Norrdahl, K. (1989). Avian and mammalian predators of shrews in Europe: regional differences, between year and seasonal variation, and mortality due to predation. Annales Zoologici Fennici, 26, 389400.Google Scholar
Kouptsov, A. V. (2013). Homing of yearlings of shrews (Sorex araneus and Sorex caecutiens, Insectivora, Soricidae). Zoologicheskii Zhurnal, 92, 941–54. (In Russian, with English summary).Google Scholar
Kowalska-Dyrcz, A. (1967). Sexual maturation in young male of the common shrew. Acta Theriologica, 12, 172–3.Google Scholar
Kožená, I. (1988). Diet of the red fox (Vulpes vulpes) in agrocoenoses in southern Moravia. Acta Scientiarium Naturalium Brno, 22, 124.Google Scholar
Kožuch, O., Lichard, M., Nosek, J., and Chmela, J. (1967a). Isolation of tick-borne encephalitis virus from the blood of Sorex araneus in a natural focus. Acta Virologica, 11, 563.Google Scholar
Kožuch, O., Nosek, J., Lichard, M., Chmela, J., and Ernek, E. (1967b). Transmission of tick-borne encephalitis virus by nymphs of Ixodes ricinus and Haemaphysalis inermis to the common shrew (Sorex araneus). Acta Virologica, 11, 256–9.Google Scholar
Kulicke, H. (1963). Kleinsäuger als Vertilger forstschädlicher Insekten. Zeitschrift für Säugetierkunde, 28, 175–83.Google Scholar
Kuprianova, I. F. (1994). The common shrew. In Fauna of North-western European Russia. vol. II, part 1, Mammals – Insectivores, Bats, Lagomorphs, Rodents, ed. Bolshakov, V. N.. Saint Petersburg: Nauka, pp. 1125. (In Russian).Google Scholar
Kuptsov, A. V. and Shchipanov, N. A. (2004). Homing in the shrews Sorex araneus, S. caecutiens, S. minutus, and S. isodon. Zoologicheskii Zhurnal, 83, 213–19. (In Russian, with English summary).Google Scholar
Laakkonen, J. (1998). Pneumocystis carinii in wildlife. International Journal for Parasitology, 28, 241–52.Google Scholar
Laakkonen, J. (2005). Characterization of microparasite assemblages of Sorex shrews. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 331–9.Google Scholar
Laakkonen, J., Sukura, A., Haukisalmi, V., and Henttonen, H. (1993). Pneumocystis carinii and helminth parasitism in shrews Sorex araneus and Sorex caecutiens. Journal of Wildlife Diseases, 29, 273–7.Google Scholar
Lavrov, N. F. (1954). Contributions to the biology of the common shrew (Sorex araneus L.). Zoologicheskii Zhurnal, 22, 361–4. (In Russian).Google Scholar
Liesenjohann, T., Liesenjohann, M., Trebaticka, L., et al. (2015). State-dependent foraging: lactating voles adjust their foraging behavior according to the presence of a potential nest predator and season. Behavioral Ecology and Sociobiology, 69, 747–54.Google Scholar
Love, R. A., Webon, C., Glue, D. E., and Harris, S. (2000). Changes in the food of British barn owls (Tyto alba) between 1974 and 1997. Mammal Review, 30, 107–29.Google Scholar
Ma, W. C., Denneman, W., and Faber, J. (1991). Hazardous exposure of ground living small mammals to cadmium and lead in contaminated terrestrial ecosystems. Archives of Environmental Contamination and Toxicology, 20, 266–70.Google Scholar
MacPhee, R. D. E. and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. In Mammal Phylogeny – Placentals, ed. Szalay, F. S., Novacek, M. J., and McKenna, M. C.. Berlin: Springer-Verlag, pp. 1331.Google Scholar
Malia, J. M., Adkins, R. M., and Allard, M. W. (2002). Molecular support for Afrotheria and the polyphyly of Lipotyphla based on analyses of the growth hormone receptor gene. Molecular Phylogenetics and Evolution, 24, 91101.Google Scholar
Marcström, V., Höglund, N., and Krebs, C. J. (1990). Periodic fluctuations in small mammals at Boda, Sweden from 1961 to 1988. Journal of Animal Ecology, 59, 753–61.Google Scholar
Meinig, V. H. (2000). Habitat choice of the sibling species Sorex araneus and S. coronatus (Insectivora, Soricidae) in northwestern Germany. Zeitschrift für Säugetierkunde, 65, 6575.Google Scholar
Mercer, S. J. and Searle, J. B. (1994). Captive breeding of the common shrew (Sorex araneus) for chromosomal analysis. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 271–6.Google Scholar
Meredith, R. W., Janečka, J. E., Gatesy, J., et al. (2011). Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science, 334, 521–4.Google Scholar
Mezhzherin, V. A. (1960). Estimation of numbers in common shrews (Sorex araneus L.) and population fluctuations for 17 years. Zoologicheskii Zhurnal, 39, 1080–7. (In Russian, with English summary).Google Scholar
Milhahn, W. (1955). Zur Lebensweise und Bedeutung der Spitzmäuse, inbesondere der Waldspitzmaus (Sorex araneus L.). Forst und Jagd, 5, 348–50.Google Scholar
Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., et al. (1998). Atlas of European Mammals. London: Poyser.Google Scholar
Moraleva, N. V. (1989). Intraspecific interactions in the common shrew Sorex araneus in Central Siberia. Annales Zoologici Fennici, 26, 423–32.Google Scholar
Moraleva, N. V., and Telitzina, A. (1994). Territoriality in juveniles of the common shrew (Sorex araneus) in prepeak and peak years of population density. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 6776.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., et al. (2001). Molecular phylogenetics and the origins of placental mammals. Nature, 409, 614–18.Google Scholar
Myllymäki, A. and Paasikallio, A. (1972). The detection of seed-eating small mammals by means of P32 treatment of spruce seeds. Aquilo, Series Zoologica, 13, 21–4.Google Scholar
Nagel, A. (1985). Sauerstoffverbrauch, Temperaturregulation und Herzfrequenz bei europäischen Spitzmäusen (Soricidae). Zeitschrift für Säugetierkunde, 50, 249–66.Google Scholar
Nagel, A. (1994). Metabolic rates and regulation of cardiac and respiratory function in European shrews. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No.18, pp. 421–4.Google Scholar
Neet, C. and Hausser, J. (1990). Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. Journal of Animal Ecology, 59, 235–50.Google Scholar
Nikaido, M., Cao, Y., Harada, M., Okada, N., and Hasegawa, M. (2003). Mitochondrial phylogeny of hedgehogs and monophyly of Eulipotyphla. Molecular Phylogenetics and Evolution, 28, 276–84.Google Scholar
Nosek, J., Kožuch, O., and Chmela, J. (1972). Contribution to the knowledge of home range in common shrew Sorex araneus L. Oecologia, 9, 5963.Google Scholar
Nowak, R. M. (1999). Walker’s Mammals of the World, 5th edn. Baltimore: Johns Hopkins University Press.CrossRefGoogle Scholar
Ochocińska, D. and Taylor, J. R. E. (2005). Living at the physiological limits: field and maximum metabolic rates of the common shrew (Sorex araneus). Physiological and Biochemical Zoology, 78, 808–18.Google Scholar
O’Leary, M. A., Bloch, J. I., Flynn, J. J., et al. (2013). The placental mammal ancestor and the post-K-Pg radiation of placentals. Science, 339, 662–7.Google Scholar
Oleinichenko, V. Y. (2007). Behavior of the common (Sorex araneus), masked (Sorex caecutiens) and pygmy (Sorex minutus) shrews at developed and alien arena. Zoologicheskii Zhurnal, 86, 1259–71. (In Russian, with English summary).Google Scholar
Oleinichenko, V. Y. (2012). Behavioral interactions of adult females of the common shrew (Sorex araneus) with conspecifics on familiar territory. Biology Bulletin, 39, 351–9.Google Scholar
Oleinichenko, V. Y. (2015). Responses of small mammals to the scent of animals that previously encountered traps. Biology Bulletin, 42, 831–44.Google Scholar
Oleinichenko, V. Y., Demidova, T. B., Kalinin, A. A., and Shchipanov, N. A. (2011). Notes on reproductive behaviour of the common shrew (Sorex araneus, Insectivora, Soricidae) in captivity. Zoologicheskii Zhurnal, 90, 199205. (In Russian, with English summary).Google Scholar
Oleinichenko, V. Y., Kalinin, A. A., Demidova, T. B., and Kuptsov, A. V. (2007). The use of space by overwintering males of red-toothed shrews (Insectivora, Soricidae) according to the results of marking with application of live-trap technique. Zoologicheskii Zhurnal, 86, 340–9. (In Russian, with English summary).Google Scholar
Page, R. A., von Merten, S., and Siemers, B. M. (2012). Associative memory or algorithmic search: a comparative study on learning strategies of bats and shrews. Animal Cognition, 15, 495504.Google Scholar
Pankakoski, E. (1985). Relationship between some meteorological factors and population dynamics of Sorex araneus in southern Finland. Acta Zoologica Fennica, 173, 287–9.Google Scholar
Pankakoski, E., Koivisto, I., and Hyvärinen, H. (1992). Reduced developmental stability as an indicator of heavy metal pollution in the common shrew Sorex araneus. Acta Zoologica Fennica, 191, 137–44.Google Scholar
Pankakoski, E., Koivisto, I., Hyvärinen, H., Terhivuo, J., and Tähkä, K. M. (1994). Experimental accumulation of lead from soil through earthworms to common shrews. Chemosphere, 29, 1639–49.Google Scholar
Pankakoski, E. and Takka, K. M. (1982). Relation of adrenal weight to sex, maturity and season in five species of small mammals. Annales Zoologici Fennici, 19, 225–32.Google Scholar
Pasanen, S. (1971). Seasonal variation in interscapular brown fat of small mammals wintering in an active state. Aquilo, Series Zoologica, 11, 132.Google Scholar
Pelikán, J. (1955). Beitrag zur Bionomie der Populationen einiger Kleinsäuger. Rozpravy ČSAV, Series MPV, 65, 163.Google Scholar
Pelikán, J. (1960). A burrow constructed by the common shrew (Sorex araneus L.). Zoologické Listy, 9, 269–72.Google Scholar
Pelikán, J. (1975). Mammals of the Nesyt fishpond, their ecology and production. Acta Scientiarum Naturalium Brno, 9, 145.Google Scholar
Peltonen, A. and Hanski, I. (1991). Patterns of island occupancy explained by colonization and extinction rates in three species of shrews. Ecology, 72, 1698–708.CrossRefGoogle Scholar
Pernetta, J. C. (1976). Diets of the shrews Sorex araneus L. and S. minutus L. in Wytham grassland. Journal of Animal Ecology, 45, 899912.Google Scholar
Pernetta, J. C. (1977). Population ecology of British shrews in grassland. Acta Theriologica, 22, 279–96.Google Scholar
Polly, P. D. (2005). Development and phenotypic correlations: the evolution of tooth shape in Sorex araneus. Evolution and Development, 7, 2941.Google Scholar
Porkert, J. (1975). Zur Immigration der Kleinsäuger in ein Wohnhaus in der Abfangsaisson 1972/1973 mit anomalen Winter. Lynx, 17, 2334.Google Scholar
Porkert, J. and Vlasák, P. (1968). Zum Einfluss der meteorologischen Bedingungen auf das Eindringen der Kleinsäuger in die Wohnhäuser im Adlergebirge. Lynx, 9, 6182.Google Scholar
Prost, S., Klietman, J., van Kolfschoten, T., et al. (2013). Effects of late Quaternary climate change on Palearctic shrews. Global Change Biology, 19, 1865–74.Google Scholar
Przełęcka, A. (1981). Seasonal changes in ultrastucture of brown adipose tissue in the common shrew (Sorex araneus L.). Cell and Tissue Research, 214, 623–32.Google Scholar
Pucek, Z. (1955). Untersuchungen über die Veränderlichkeit des Schädels im Lebenszyklus von Sorex araneus araneus L. Annales Universitatis Mariae Curie-Skłodowska C, 9, 163291.Google Scholar
Pucek, Z. (1957). Histomorphologische Untersuchungen über die Winterdepression des Schädels bei Sorex L. und Neomys Kaup. Annales Universitatis Mariae Curie-Skłodowska C, 10, 399428.Google Scholar
Pucek, Z. (1959). Some biological aspects of the sex-ratio in the common shrew. Acta Theriologica, 3, 4373.Google Scholar
Pucek, Z. (1960). Sexual maturation and variability of the reproductive system in young shrews (Sorex L.) in the first calendar year of life. Acta Theriologica, 3, 269–96.Google Scholar
Pucek, Z. (1963). Seasonal changes in the braincase of some representatives of the genus Sorex from the Palearctic. Journal of Mammalogy, 44, 523–36.Google Scholar
Pucek, Z. (1964). Morphological changes in the shrews kept in captivity. Acta Theriologica, 8, 137–66.Google Scholar
Pucek, Z. (1965). Seasonal and age changes in the weight of internal organs of shrews. Acta Theriologica, 10, 369448.Google Scholar
Pucek, Z. (1970 ). Seasonal and age changes in shrews as an adaptive process. In Variation in Mammalian Populations, ed. Berry, R. J. and Southern, H. N.. London: Symposia of the Zoological Society of London 26, pp. 189207.Google Scholar
Randolph, S. E. (1975). Seasonal dynamics of a host-parasite system – Ixodes trianguliceps (Acarina, Ixodidae) and its small mammal hosts. Journal of Animal Ecology, 44, 425–49.Google Scholar
Read, H. J. and Martin, M. H. (1993). The effect of heavy metals on populations of small mammals from woodlands in Avon (England); with particular emphasis on metal concentrations in Sorex araneus L. and Sorex minutus L. Chemosphere, 27, 2197–211.Google Scholar
Resman, K., Korva, M., Fajs, L., et al. (2013). Molecular evidence and high genetic diversity of shrew-borne Seewis virus in Slovenia. Virus Research, 177, 113–17.Google Scholar
Roots, C. D. (1992). Morphological and Ecological Studies on the Helminth Parasites of British Shrews. PhD dissertation, University of London.Google Scholar
Rudge, M. R. (1968). Food of the common shrew Sorex araneus in Britain. Journal of Animal Ecology, 37, 565–81.Google Scholar
Rychlik, L. (1998). Evolution of social systems in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 347406.Google Scholar
Rychlik, L., Ruczyński, I., and Borowski, Z. (2010). Radiotelemetry applied to field studies of shrews. Journal of Wildlife Management, 74, 1335–42.Google Scholar
Rzebik-Kowalska, B. (1998). Fossil history of shrews in Europe. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 2392.Google Scholar
Saarikko, J. (1989). Foraging behaviour of shrews. Annales Zoologici Fennici, 26, 411–23.Google Scholar
Samokhvalov, M. V., Kovalevskii, Y. V., Korenberg, E. I., et al. (2010). Small mammals as possible reservoir hosts of Babesia microti in the Middle Urals. Zoologicheskii Zhurnal, 89, 101–5. (In Russian, with English summary).Google Scholar
Sato, J. J., Ohdachi, S.D., Echenique-Diaz, L.M., et al. (2016). Molecular phylogenetic analysis of nuclear genes suggests a Cenozoic over-water dispersal origin for the Cuban solenodon. Scientific Reports, 6, 31173.Google Scholar
Schickmann, S., Urban, A., Kräutler, K., Nopp-Mayr, U., and Hackländer, K. (2012). The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval disturbed and managed central European mountainous forests. Oecologia, 170, 395409.Google Scholar
Schlegel, M., Radosa, L., Rosenfeld, U. M., et al. (2012). Broad geographical distribution and high genetic diversity of shrew-borne Seewis hantavirus in Central Europe. Virus Genes, 45, 4855.Google Scholar
Schlüter, A. (1980). Waldspitzmaus (Sorex araneus) und Wasserspitzmaus (Neomys fodiens) als Aasfresser im Winter. Säugetierkundliche Mitteilungen, 28, 4554.Google Scholar
Searle, J. B. (1984). Breeding the common shrew (Sorex araneus) in captivity. Laboratory Animals, 18, 359–63.Google Scholar
Searle, J. B. (1985). Methods for determining the sex of common shrews (Sorex araneus). Journal of Zoology, 206, 279–82.Google Scholar
Searle, J. B. (1990). Evidence for multiple paternity in the common shrew (Sorex araneus). Journal of Mammalogy, 71, 139–44.Google Scholar
Searle, J. B. and Stockley, P. (1994). The breeding system of the common shrew (Sorex araneus) from a genetical perspective. Folia Zoologica 43 (Suppl. 1), 97105.Google Scholar
Shchipanov, N.A. (2007). Understanding the boundaries between chromosome races of common shrews in terms of restricted movement by individual shrews. Russian Journal of Theriology, 6, 117–22.Google Scholar
Shchipanov, N. A., Alexandrov, D. Y., and Alexandrova, A. V. (2003a). Small mammals disperse micromycete spores. Doklady Akademii Nauk, 390, 136–41. (In Russian, with English summary).Google Scholar
Shchipanov, N. A., Alexandrov, D. Y., and Alexandrova, A. V. (2006). Dispersing of microscopic fungi spores by small mammals. Zoologicheskii Zhurnal, 85, 101–13. (In Russian, with English summary).Google Scholar
Shchipanov, N. A., Kalinin, A. A., Demidova, T. B., et al. (2005). Population ecology of red-toothed shrews, Sorex araneus, S. caecutiens, S. minutus, and S. isodon, in Central Russia. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 201–16.Google Scholar
Shchipanov, N. A., Kalinin, A. A., Oleinichenko, V. Y., and Demidova, T. B. (1998). General behavioural characteristics of shrews Sorex araneus, S. caecutiens, S. minutus, and S. isodon (Insectivora, Soricidae). Russian Journal of Zoology, 2, 300–12.Google Scholar
Shchipanov, N. A. and Kuptsov, A. V. (2004). Nonresidence in small mammals and its role in functioning of populations. Uspekhi Sovremennoi Biologii, 124, 2843. (In Russian).Google Scholar
Shchipanov, N. A., Kuptsov, A. V., Demidova, T. B., et al. (2008). Nonresidence and dispersal of common shrews (Sorex araneus, Insectivora). Zoologicheskii Zhurnal, 87, 331–43. (In Russian, with English summary).Google Scholar
Shchipanov, N. A., Kuptsov, A. V., Kalinin, A. A., and Oleinichenko, V. Y. (2003b). To counting of red-toothed shrews (Insectivora, Soricidae). Zoologicheskii Zhurnal, 82, 1258–65. (In Russian, with English summary).Google Scholar
Shchipanov, N. A., Kuptsov, A. V., Kalinin, A. A., et al. (2010). Small mammals of the southeast Tver oblast. Communication 1. The fauna and biotopic distribution. Contemporary Problems of Ecology, 3, 587–92.Google Scholar
Shchipanov, N. A. and Pavlova, S. V. (2016). Multi-level subdivision in the species group ‘araneus’ of the genus Sorex. 1. Chromosomal differentiation. Zoologicheskii Zhurnal, 95, 216–33. (In Russian, with English summary).Google Scholar
Shchipanov, N. А., Sycheva, V. B., and Tumasyan, F. А. (2016). Morphometric distances and population structuring in the common shrew Sorex araneus L. (Lipotyphla: Soricidae). Biology Bulletin, 43 , 437–49.Google Scholar
Shchipanov, N. A., Tumasyan, F. A., Raspopova, A. A., and Kouptsov, A. V. (2011). Two types of using of space in the resident common shrews Sorex araneus L. Biology Bulletin, 38, 92–7.Google Scholar
Sheftel, B. I. (1989). Long-term and seasonal dynamics of shrews in Central Siberia. Annales Zoologici Fennici, 26, 357–69.Google Scholar
Sheftel, B. I. (1994). Spatial distribution of nine species of shrews in the central Siberian taiga. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr., and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 4556.Google Scholar
Sheftel, B. I. (2005). Distribution of different size groups of red-toothed shrews (Sorex) in the Palearctic region. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 167–77.Google Scholar
Shillito, J. F. (1963a). Field observation on the growth, reproduction and activity of a woodland population of the common shrew Sorex araneus L. Proceedings of the Zoological Society of London, 140, 99113.Google Scholar
Shillito, J. F. (1963b). Observations on the range and movements of a woodland population of the common shrew Sorex araneus L. Proceedings of the Zoological Society of London, 140, 533–46.Google Scholar
Shvarts, E. A., Chernyshev, N. V., and Popov, O. Y. (1997). Do shrews have an impact on soil invertebrates in Eurasian forests? Ecoscience, 4, 158–62.Google Scholar
Shvarts, E. A. and Demin, D. V. (1994). Community organization of shrews in temperate zone forest of northwestern Russia. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 5766.Google Scholar
Siegmund, R. and Kapischke, H.-J. (1983). Untersuchungen zur Erfassung der motorischen und lokomotorischen Aktivität der Waldspitzmaus (Sorex araneus L.). Zoologischer Anzeiger, 210, 282–8.Google Scholar
Skarén, U. A. P. (1972). Fluctuations in small populations in mossy forests of Kuhmo, eastern Finland, during eleven years. Annales Zoologici Fennici, 9, 147–51.Google Scholar
Skarén, U. (1973a). Spring moult and onset of the breeding season of the common shrew (Sorex araneus L.) in central Finland. Acta Theriologica, 18, 443–58.Google Scholar
Skarén, U. (1973b). Aberrant colour of shrews (Sorex araneus L. and Neomys fodiens Schreb.) in Finland. Säugetierkundliche Mitteilungen, 21, 74–5.Google Scholar
Sládek, J. (1970). Werden Spitzmäuse von der Wildkatze gefressen? Säugetierkundliche Mitteilungen, 18, 224–6.Google Scholar
Song, J. W., Gu, S. H., Bennett, S. N., et al. (2007). Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus). Virology Journal, 4, 114.Google Scholar
Springer, M. S., Emerling, C. A., Meredith, R. W., et al. (2017). Waking the undead: implications of a soft explosive model for the timing of placental mammal diversification. Molecular Phylogenetics and Evolution, 106, 86103.Google Scholar
Springer, M. S., Meredith, R. W., Teeling, E. C., and Murphy, W. J. (2013). Technical comment on ‘The placental mammal ancestor and the post-K-Pg radiation of placentals’. Science, 341, 613.Google Scholar
Springer, M. S., Stanhope, M. J., Madsen, O., and De Jong, W. W. (2004). Molecules consolidate the placental mammal tree. Trends in Ecology and Evolution, 19, 430–8.Google Scholar
Stacheev, V. V., Balakirev, А. Е., Grigoryeva, О. О., et al. (2010). Distribution of cryptic shrew species of the genus Sorex (Mammalia) on the plain between the Don and Kuban rivers with molecular marker diagnostics. Povolzhskii Ekologicheskii Zhurnal, 4, 396403. (In Russian, with English summary).Google Scholar
Stanhope, M. J., Waddell, V. G., Madsen, O., et al. (1998). Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences USA, 95, 9967–72.Google Scholar
Stein, G. H. W. (1961). Beziehungen zwischen Bestandsdichte und Vermehrung bei der Waldspitzmaus, Sorex araneus, und weiteren Rotzahn-spitzmausen. Zeitschrift für Säugetierkunde, 26, 116.Google Scholar
Štěrba, O. (1977). Prenatal development of central European insectivores. Folia Zoologica, 26, 2744.Google Scholar
Stockley, P. (1996). Synchrony of estrus in common shrews. Journal of Mammalogy, 77, 383–7.Google Scholar
Stockley, P. (1997). No evidence of sperm selection by female common shrews. Proceedings the Royal Society of London B, 264, 1497–500.Google Scholar
Stockley, P. and Macdonald, D. W. (1998). Why do female common shrews produce so many offspring? Oikos, 83, 560–6.Google Scholar
Stockley, P. and Searle, J. B. (1998). Shrew mating systems. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 407–24.Google Scholar
Stockley, P., Searle, J. B., Macdonald, D. W., and Jones, C. S. (1993). Female multiple mating behaviour in the common shrew as a strategy to reduce inbreeding. Proceedings the Royal Society of London B, 254, 173–9.Google Scholar
Stockley, P., Searle, J. B., Macdonald, D. W., and Jones, C. S. (1994). Alternative reproductive tactics in male common shrews: relationship between mate-searching behaviour, sperm production and reproductive success as revealed by DNA fingerprinting. Behavioral Ecology and Sociobiology, 34, 71–8.Google Scholar
Stockley, P., Searle, J. B., Macdonald, D. W., and Jones, C. S. (1996). Correlates of reproductive success within alternative mating tactics of the common shrew. Behavioural Ecology, 7, 334–40.Google Scholar
Stopka, P. (1994). Sex-dependent habitat selection in the common shrew during the mating period: study of a low density population. Folia Zoologica, 43 (Suppl. 1), 107–11.Google Scholar
Sundell, J., Church, C., and Ovaskainen, O. (2012). Spatio-temporal patterns of habitat use in voles and shrews modified by density, season and predators. Journal of Animal Ecology, 81, 747–55.Google Scholar
Symonds, M. R. E. (2005). Phylogeny and life histories of the “Insectivora”: controversies and consequences. Biological Reviews, 80, 93128.Google Scholar
Tarkowski, A. K. (1957). Studies on reproduction and potential mortality of the common shrew (Sorex araneus L.) under natural conditions. Annales Universitatis Mariae Curie-Skłodowska C, 10, 177244. (In Polish, with English summary).Google Scholar
Tast, J., Kaikusalo, A., and Järvinen, A. (2005). Population fluctuations of Sorex araneus at Kilpsjärvi, Finnish Lapland, as compared with rodent cycles. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 215–28.Google Scholar
Taylor, J. R. E. (1998). Evolution of energetic strategies in shrews. In Evolution of Shrews, ed. Wójcik, J. M. and Wolsan, M.. Białowieża: Mammal Research Institute, pp. 309–46.Google Scholar
Taylor, J. R. E., Rychlik, L., and Churchfield, S. (2012). Winter reduction of body mass in a very small, nonhibernating mammal: consequences in heat loss and metabolic rates. Physiological and Biochemical Zoology, 86, 918.Google Scholar
Tegelström, H. and Hansson, L. (1987). Evidence of long-distant dispersal in the common shrew (Sorex araneus). Zeitschrift für Säugetierkunde, 52, 52–4.Google Scholar
Tegelström, H., Searle, J. B., Brookfield, J., and Mercer, S. (1991). Multiple paternity in wild common shrews (Sorex araneus) is confirmed by DNA-fingerprinting. Heredity, 66, 373–9.Google Scholar
Temple, H. J. and Terry, A. (2009). European mammals: Red List status, trends, and conservation priorities. Folia Zoologica, 58, 248–69.Google Scholar
Tkadlec, E. and Stenseth, N. C. (2001). A new geographical gradient in vole population dynamics. Proceedings of the Royal Society of London B, 268, 1547–52.Google Scholar
Tomášková, L., Bejček, V., Sedláček, F., et al. (2005). Population biology of shrews (Sorex araneus and Sorex minutus) from a polluted area in central Europe. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 189–97.Google Scholar
Tumasyan, F. A. and Shchipanov, N. A. (2012). Importance of olfactory communication in the spiral search strategy of the common shrew Sorex araneus L. Doklady Biological Sciences, 447, 367–9.Google Scholar
Tumasyan, F. A. and Shchipanov, N. A. (2013). Significance of the smell of a conspecific for the spatial distribution of the common shrew Sorex araneus L. Biology Bulletin, 40, 329–36.Google Scholar
Urban, A., Kataržytė, M., Schickmann, S., Kräutler, K., and Pla, T. (2012). Is small mammal mycophagy relevant for truffle cultivation? Acta Mycologica, 47, 139–43.Google Scholar
Valimäki, K., Hinten, G., and Hanski, I. (2007). Inbreeding and competitive ability in the common shrew (Sorex araneus). Behavioral Ecology and Sociobiology, 61, 9971005.CrossRefGoogle Scholar
Vlasák, P. (1973). Vergleich der postnatalen Entwicklung der Arten Sorex araneus L. und Crocidura suaveolens (Pall.) mit Bemerkungen zur Methodik der Laborzucht (Insectivora, Soricidae). Věstník Československé Společnosti Zoologické, 37, 222–33.Google Scholar
Vlasák, P. (1980). Seasonal changes in the surface activity of the common shrew, Sorex araneus (Insectivora). Věstník Československé Společnosti Zoologické, 44, 306–19.Google Scholar
Vlasák, P. (1989). Small mammals, their population cycle and production in stands of the alliance Molinion Koch, 1926. Acta Universitatis Carolinae – Biologica, 31, 313–48.Google Scholar
Vlasák, P. (1998). Size of litters of the common shrew (Sorex araneus) in the Czech and the Slovak Republics. Acta Universitatis Carolinae – Biologica, 42, 4350.Google Scholar
Vogel, P. (1972a). Vergleichende Untersuchung zum Ontogenesemodus einheimischer Soriciden (Crocidura russula, Sorex araneus und Neomys fodiens). Revue Suisse de Zoologie, 79, 1201–332.Google Scholar
Vogel, P. (1972b). Beitrag zur Fortplanzungsbiologie der Gattungen Sorex, Neomys und Crocidura (Soricidae). Verhandlungen der Naturforschenden Gesellschaft in Basel, 82, 165–92.Google Scholar
Vogel, P. (1976). Energy consumption in European and African shrews. Acta Theriologica, 21, 195206.Google Scholar
Vogel, P. (1984). Verteilung des roten Zahnschmelzes im Gebiss der Soricidae (Mammalia, Insectivora). Revue Suisse de Zoologie, 31, 699708.Google Scholar
von Merten, S., and Siemers, B. M. (2012). Exploratory behaviour in shrews: fast-lived Sorex versus slow-lived Crocidura. Animal Behaviour, 84, 110.Google Scholar
Wichmann, H. (1954). Kleinsäuger als Feinde des Buchdruckers, Ips typographus (Linné 1758). Säugetierkundliche Mitteilungen, 2, 60–6.Google Scholar
Włostowski, T., Chętnicki, W., Fedyk, S., Krasowska, A., and Banaszek, A. (1995). Chromosome races and tissue heavy metals in free-living male common shrews (Sorex araneus L.). Annales Zoologici Fennici, 32, 429–33.Google Scholar
Wołk, E. (1969). Body weight and daily food intake in captive shrews. Acta Theriologica, 13, 35–7.Google Scholar
Wołk, E. (1981). Seasonal and age changes in leucocyte indices in shrews. Acta Theriologica, 26, 219–29.Google Scholar
Yalden, D. W. (1974). Population density in the common shrew, Sorex araneus. Journal of Zoology, 173, 262–4.Google Scholar
Yannic, G., Basset, P., Buchi, L., Hausser, J., and Broquet, T. (2012). Scale-specific sex-biased dispersal in the Valais shrew unveiled by genetic variation on the Y chromosome, autosomes, and mitochondrial DNA. Evolution, 66, 1737–50.Google Scholar
Yashina, L. N., Abramov, S. A., Gutorov, V. V., et al. (2010). Seewis virus: phylogeography of a shrew-borne hantavirus in Siberia, Russia. Vector-Borne and Zoonotic Diseases, 10, 585–91.Google Scholar
Yaskin, V. (1994). Variation in brain morphology of the common shrew. In Advances in the Biology of Shrews, ed. Merritt, J. F., Kirkland, G. L. Jr, and Rose, R. K.. Pittsburgh: Carnegie Museum of Natural History, Special Publication No. 18, pp. 155–61.Google Scholar
Yaskin, V. (2005). The annual cycle of spatial behavior and hippocampal volume in Sorex. In Advances in the Biology of Shrews II, ed. Merritt, J. F., Churchfield, S., Hutterer, R., and Sheftel, B.. New York: Special Publication of the International Society of Shrew Biologists No. 1, pp. 373–86.Google Scholar
Ye, J., Biltueva, L., Huang, L., et al. (2006). Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Research, 14, 151–9.Google Scholar
Zaitsev, M. V., Voyta, L. L., and Sheftel, B. I. (2014). The Mammals of Russia and Adjacent Territories. Lipotyphlans. Saint Petersburg: Nauka.Google Scholar
Zakharov, V. M., Demin, D. V., Baranov, A. S., et al. (1997a). Developmental stability and population dynamics of shrews Sorex in central Siberia. Acta Theriologica, Suppl. 4, 41–8.Google Scholar
Zakharov, V. M., Pankakoski, E., and Sheftel, B. I. (1997b). Phenotypic diversity and population dynamics: another look (with particular reference to the common shrew Sorex araneus). Acta Theriologica, Suppl. 4, 57–66.Google Scholar
Zakharov, V. M., Pankakoski, E., Sheftel, B. I., Peltonen, A., and Hanski, I. (1991). Developmental stability and population dynamics in the common shrew Sorex araneus. American Naturalist, 138, 797810.Google Scholar
Zakharov, V. M., Sheftel, B. I., and Dmitriev, S. G. (2011). Climate change and population dynamics: possible consequences (with particular references to study of small mammals in Central Siberia). Uspechi Sovremennoi Biologii, 5, 435–9. (In Russian, with English summary).Google Scholar
Zejda, J. (1976). The small mammal community of a lowland forest. Acta Scientiarum Naturalium Brno, 10, 139.Google Scholar
Zhang, Y.-Z. (2014). Discovery of hantaviruses in bats and insectivores and the evolution of the genus Hantavirus. Virus Research, 187, 1521.Google Scholar
Zima, J. (2003). Shrews I. In Grzimek‘s Animal Life Encyclopedia, vol. 13, Mammals II, ed. Kleiman, D. G., Geist, V., Hutchins, M., and McDade, M. C.. Farmington Hills, MI: Gale Group Science, pp. 247–64.Google Scholar
Zima, J., Lukáčová, L., and Macholán, M. (1998). Chromosomal evolution in shrews. In Evolution of Shrews, ed. Wójcik, J.M. and Wolsan, M., Białoweża: Mammal Research Institute, pp. 175218.Google Scholar
Zippelius, H.-M. (1958). Zur Jugendentwicklung der Waldspitzmaus, Sorex araneus. Bonner zoologische Beiträge, 9, 120–9.Google Scholar
Zub, K., Jedrzejewska, B., Jedrzejewski, W., and Barton, K. A. (2012). Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. Acta Theriologica, 57, 205–16.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×