Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T22:56:57.188Z Has data issue: false hasContentIssue false

4 - Geometrical structures in space and spacetime

Published online by Cambridge University Press:  04 December 2009

Get access

Summary

The manifold, coordinates, smoothness, curves

In this chapter I explain some ideas of geometry from a different standpoint and with different aims. The last chapter mainly showed ways to visualise geometry. It moved within a somewhat classical ambit of spaces with constant curvature and rather restricted axioms of incidence. It is time for a broader canvas. This will be more useful if it is tied to more mathematical techniques, to show the advantages of mapping spacetime points into the real-number space of n dimensions, Rn. With luck and application, you will gain some reading skills which will carry you through some of the mathematical parts of the literature. This approach also relates spatial and spacetime geometries together in a fairly intuitive way. Exploiting the notation of partial differential calculus yields a view of local geometric structure, of neighbourhood or infinitesimal structure. Later chapters do not lean very heavily on this one, but you should find it useful to read it. You could skip it and still get rather a lot from the rest of the book. The most accessible books on these topics that I know are Lieber (1936) which starts at a quite elementary level and takes a clear path to sophisticated concepts, Schutz (1980; 1985), the latter being especially useful. They cover a great deal more than is aimed at here. Sklar (1974b) and Angel (1980) are also very helpful. Friedman (1983) and Torretti (1983) are excellent, but advanced, philosophical and mathematical treatments.

In chapter 3 various metrical geometries were found to be subgeometries of projective geometry.

Type
Chapter
Information
The Shape of Space , pp. 94 - 111
Publisher: Cambridge University Press
Print publication year: 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×