Published online by Cambridge University Press: 05 July 2014
Abstract
This chapter presents a systematic exposition of predicate transformer semantics for quantum programs. It is divided into two parts: The first part reviews the state transformer (forward) semantics of quantum programs according to Selinger's suggestion of representing quantum programs by superoperators and elucidates D'Hondt-Panangaden's theory of quantum weakest preconditions in detail. In the second part, we develop a quite complete predicate transformer semantics of quantum programs based on Birkhoff-von Neumann quantum logic by considering only quantum predicates expressed by projection operators. In particular, the universal conjunctivity and termination law of quantum programs are proved, and Hoare's induction rule is established in the quantum setting.
8.1 Introduction
In the mid-1990s Shor and Grover discovered, respectively, the famous quantum factoring and searching algorithms. Their discoveries indicated that in principle quantum computers offer a way to accomplish certain computational tasks much more efficiently than classical computers, and thus stimulated an intensive investigation in quantum computation. Since then a substantial effort has been made to develop the theory of quantum computation, to find new quantum algorithms, and to exploit the physical techniques needed in building functional quantum computers, including in particular fault tolerance techniques.
Currently, quantum algorithms are expressed mainly at the very low level of quantum circuits. In the history of classical computation, however, it was realized long time ago that programming languages provide a technique that allows us to think about a problem that we intend to solve in a high-level, conceptual way, rather than the details of implementation.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.