Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T10:02:00.308Z Has data issue: false hasContentIssue false

Part III - Neural Mechanisms

Published online by Cambridge University Press:  05 October 2015

Gabriele Oettingen
Affiliation:
New York University
Peter M. Gollwitzer
Affiliation:
New York University
Get access

Summary

Author Note

Laurence Steinberg, Department of Psychology, Temple University.

This chapter summarizes findings from a program of research supported by a grant from the John D. and Catherine T. MacArthur Foundation and the National Institute on Drug Abuse.

I am indebted to the many collaborators who have worked on these studies over the years, in particular Dustin Albert, Marie Banich, Elizabeth Cauffman, Jason Chein, Sandra Graham, Lia O'Brien, Kaitlyn Uckert, and Jennifer Woolard.

Correspondence concerning this chapter should be addressed to Laurence Steinberg, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, Pennsylvania 19122. E-mail: [email protected]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Albert, D., & Steinberg, L. (2011a). Judgment and decision making in adolescence. Journal of Research on Adolescence, 21, 211224. doi: 10.1111/j.15327795.2010.00724.xCrossRefGoogle Scholar
Albert, D., & Steinberg, L. (2011b). Peer influences on adolescent risk behavior. In Bardo, M., Fishbein, D., & Milich, R. (Eds.), Inhibitory control and drug abuse prevention: From research to translation (Pt 3, pp. 211226). New York: Springer.CrossRefGoogle Scholar
Asato, M., Sweeney, J., & Luna, B. (2006). Cognitive processes in the development of TOL performance. Neuropsychologia, 44, 22592269. doi: 10.1016/j.neuropsychologia.2006.05.010CrossRefGoogle ScholarPubMed
Bearman, P., Jones, J., & Udry, J. R. (1997). The national longitudinal study of adolescent health: Research design. Chapel Hill, NC: Carolina Population Center.Google Scholar
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715. doi: 10.1016/0010-0277(94)90018-3CrossRefGoogle ScholarPubMed
Berg, W., & Byrd, D. (2002). The Tower of London spatial problem solving task: Enhancing clinical and research implementation. Journal of Experimental and Clinical Neuropsychology, 25, 586604. doi: 10.1076/jcen.24.5.586.1006CrossRefGoogle Scholar
Burnett, S., Sebastian, C., Kadosh, K., & Blakemore, S.-J. (2011). The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies. Neuroscience and Biobehavioral Reviews, 35, 16541664. doi: 10.1016/j.neubiorev.2010.10.011CrossRefGoogle ScholarPubMed
Casey, B. J., Getz, S., & Galván, A. (2008). The adolescent brain. Developmental Review, 28, 6277. doi: 10.1016/j.dr.2007.08.003CrossRefGoogle ScholarPubMed
Casey, B. J., Jones, R., & Somerville, L. (2011). Braking and accelerating of the adolescent brain. Journal of Research on Adolescence, 21, 2133. doi: 10.1111/j.15327795.2010.00712.xCrossRefGoogle ScholarPubMed
Cauffman, E., Shulman, E., Steinberg, L., Claus, E., Banich, M., et al. (2010). Age differences in affective decision making as indexed by performance on the Iowa Gambling Task. Developmental Psychology, 46, 193207. doi: 10.1037/a0016128CrossRefGoogle ScholarPubMed
Chein, J., Albert, D., O'Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk-taking by enhancing activity in the brain's reward circuitry. Developmental Science, 14, F1F10. doi: 10.1111/j.1467-7687.2010.01035.xCrossRefGoogle ScholarPubMed
Chein, J., & Morrison, A. (2010). Expanding the mind's workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin and Review, 17, 193199. doi: 10.3758/PBR.17.2.193CrossRefGoogle ScholarPubMed
Csikszentmihalyi, M., Larson, R., & Prescott, S. (1977). The ecology of adolescent activity and experience. Journal of Youth and Adolescence, 6, 281294. doi: 10.1007/BF02138940CrossRefGoogle ScholarPubMed
Doremus-Fitzwater, T., Varlinskaya, E., & Spear, L. (2010). Motivational systems in adolescence: Possible implications for age differences in substance abuse and other risk-taking behaviors. Brain and Cognition, 72, 114123. doi: 10.1016/j.bandc.2009.08.008CrossRefGoogle ScholarPubMed
Duckworth, A., Grant, H., Loew, B., Oettingen, G., & Gollwitzer, P. M. (2011). Self-regulation strategies improve self-discipline in adolescents: Benefits of mental contrasting and implementation intentions. Educational Psychology, 31, 1726. doi: 10.1080/01443410.2010.506003CrossRefGoogle Scholar
Eaton, D. K., Kann, L., Kinchen, S., Shanklin, S., Flint, K. H., et al. (2012). Youth risk behavior surveillance – United States, 2011. Morbidity and Mortality Weekly Report, 61, 1162.Google Scholar
Forbes, E., & Dahl, R. (2010). Pubertal development and behavior: Hormonal activation of social and motivational tendencies. Brain and Cognition, 72, 6672. doi: 10.1016/j.bandc.2009.10.007CrossRefGoogle ScholarPubMed
Fossati, A., Barratt, E., Acquarini, E., & Di Ceglie, A. (2002). Psychometric properties of an adolescent version of the Barratt Impulsiveness Scale-11 for Italian high school students. Perceptual and Motor Skills, 95, 621635. doi: 10.2466/PMS.95.6.621–635CrossRefGoogle ScholarPubMed
Galván, A. (2010). Adolescent development of the reward system. Frontiers in Human Neuroscience, 4, 614. doi: 10.3389/neuro.09.006.2010Google ScholarPubMed
Galván, A., Hare, T., Parra, C., Penn, J., Voss, H., et al. (2006). Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. Journal of Neuroscience, 26, 68856892. doi: 10.1523/JNEUROSCI.1062-06.2006CrossRefGoogle ScholarPubMed
Galván, A., Hare, T., Voss, H., Glover, G., & Casey, B. J. (2007). Risk-taking and the adolescent brain: Who is at risk? Developmental Science, 10, F8F14. doi: 10.1111/j.1467-7687.2006.00579.xCrossRefGoogle ScholarPubMed
Gardner, M., & Steinberg, L. (2005). Peer influence on risk-taking, risk preference, and risky decision-making in adolescence and adulthood: An experimental study. Developmental Psychology, 41, 625635. doi: 10.1037/0012-1649.41.4.625CrossRefGoogle ScholarPubMed
Gawrilow, C., Morgenroth, K., Schultz, R., Oettingen, G., & Gollwitzer, P. (2013). Mental contrasting with implementation intentions enhances self-regulation of goal pursuit in schoolchildren at risk for ADHD. Motivation and Emotion, 37, 134145. doi: 10.1007/s11031-012-9288-3CrossRefGoogle Scholar
Gollwitzer, P. M., & Oettingen, G. (2011). Planning promotes goal striving. In Vohs, K. D. & Baumeister, R. F. (Eds.), Handbook of self-regulation: Research, theory, and applications (2nd ed., pp. 162185). New York: Guilford.Google Scholar
Green, L., Myerson, J., & Macaux, E. (2005). Temporal discounting when the choice is between two delayed rewards. Journal of Experimental Psychology, 31, 11211133. doi: 10.1037/0278–7393.31.5.1121Google ScholarPubMed
Harden, K. P., & Tucker-Drob, E. (2011). Individual differences in the development of sensation seeking and impulsivity during adolescence: Further evidence for a dual systems model. Developmental Psychology, 47, 739746. doi: 10.1037/a0023279CrossRefGoogle ScholarPubMed
Insel, T., & Fernald, R. (2004). How the brain processes social information: Searching for the social brain. Annual Review of Neuroscience, 27, 697722. doi: 10.1146/annurev.neuro.27.070203.144148CrossRefGoogle ScholarPubMed
Leshem, R., & Glicksohn, J. (2007). The construct of impulsivity revisited. Personality and Individual Differences, 43, 681691. doi: 10.1016/j.paid.2007.01.015CrossRefGoogle Scholar
Luna, B., Padmanabhan, A., & O'Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72, 101113. doi: 10.1016/j.bandc.2009.08.005CrossRefGoogle ScholarPubMed
Martin, C. A., Logan, T. K., Leukefeld, C., Milich, R., Omar, H., & Clayton, R. (2001). Adolescent and young adult substance use: Association with sensation seeking, self-esteem and retrospective report of early pubertal onset. A preliminary examination. International Journal of Adolescent Medicine and Health, 13, 211219. doi: 10.1515/IJAMH.2001.13.3.211CrossRefGoogle Scholar
Morrison, A., & Chein, J. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18, 4660. doi: 10.3758/s13423-010-0034-0CrossRefGoogle ScholarPubMed
O'Brien, L., Albert, D., Chein, J., & Steinberg, L. (2011). Adolescents prefer more immediate rewards when in the presence of their peers. Journal of Research on Adolescence, 21, 747753. doi: 10.1111/j.1532-7795.2011.00738.xCrossRefGoogle Scholar
Oettingen, G. (2012). Future thought and behaviour change. European Review of Social Psychology, 23, 163. doi: 10.1080/10463283.2011.643698CrossRefGoogle Scholar
Oettingen, G., & Gollwitzer, P. M. (2010). Strategies of setting and implementing goals: Mental contrasting and implementation intentions. In Maddux, J. E. & Tangney, J. P. (Eds.), Social psychological foundations of clinical psychology (pp. 114135). New York: Guilford.Google Scholar
Ohmura, Y., Takahashi, T., Kitamura, N., & Wehr, P. (2006). Three-month stability of delay and probability discounting measures. Experimental and Clinical Psychopharmacology, 14, 318328. doi: 10.1037/1064-1297.14.3.318CrossRefGoogle ScholarPubMed
Ozer, E., & Irwin, C. (2009). Adolescent and young adult health: From basic health status to clinical interventions. In Lerner, R. & Steinberg, L. (Eds.), Handbook of adolescent psychology (3rd ed., Vol. 1, pp. 618641). New York: Wiley.Google Scholar
Peters, E., & Slovic, P. (2000). The springs of action: Affective and analytical information processing in choice. Personality and Social Psychology Bulletin, 26, 14651475. doi: 10.1177/01461672002612002CrossRefGoogle Scholar
Petry, N. (2002). Discounting of delayed rewards in substance abusers: Relationship to antisocial personality disorder. Psychopharmacology, 162, 14322072. doi: 10.1007/s00213-002-1115-1CrossRefGoogle ScholarPubMed
Pfeifer, J., & Allen, N. (2012). Arrested development? Reconsidering dual-systems models of brain function in adolescence and disorders. Trends in Cognitive Science, 16, 322329. doi: 10.1016/j.tics.2012.04.011CrossRefGoogle ScholarPubMed
Pfeifer, J., & Blakemore, S.-J. (2012). Adolescent social cognitive and affective neuroscience: Past, present, and future. Social Cognitive and Affective Neuroscience, 7, 110. doi: 10.1093/scan/nsr099CrossRefGoogle ScholarPubMed
Reyna, V. F., & Farley, F. (2006). Risk and rationality in adolescent decision-making: Implications for theory, practice, and public policy. Psychological Science in the Public Interest, 7, 144. doi: 10.1111/j.1529–1006.2006.00026.xCrossRefGoogle ScholarPubMed
Smith, A., Chein, J., & Steinberg, L. (2013). Impact of socio-emotional context, brain development, and pubertal maturation on adolescent decision-making. Hormones and Behavior, 64, 323332. doi: 10.1016/j.yhbeh.2013.03.006CrossRefGoogle Scholar
Spear, L. (2009). The behavioral neuroscience of adolescence. New York: Norton.Google Scholar
Steinberg, L. (2004). Risk-taking in adolescence: What changes, and why? Annals of the New York Academy of Sciences, 1021, 5158. doi: 10.1196/annals.1308.005CrossRefGoogle ScholarPubMed
Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-taking. Developmental Review, 28, 78106. doi: 10.1016/j.dr.2007.08.002CrossRefGoogle ScholarPubMed
Steinberg, L. (2010). A dual systems model of adolescent risk-taking. Developmental Psychobiology, 52, 216224. doi: 10.1002/dev.20445CrossRefGoogle ScholarPubMed
Steinberg, L., Albert, D., Cauffman, E., Banich, M., Graham, S., & Woolard, J. (2008). Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: Evidence for a dual systems model. Developmental Psychology, 44, 17641778. doi: 10.1037/a0012955CrossRefGoogle ScholarPubMed
Steinberg, L., Cauffman, E., Woolard, J., Graham, S., & Banich, M. (2009). Are adolescents less mature than adults? Minors’ access to abortion, the juvenile death penalty, and the alleged APA “flip-flop.” American Psychologist, 64, 583594. doi: 10.1037/a0014763CrossRefGoogle ScholarPubMed
Steinberg, L., Graham, S., O'Brien, L., Woolard, J., Cauffman, E., & Banich, M. (2009). Age differences in future orientation and delay discounting. Child Development, 80, 2844. doi: 10.1111/j.1467-8624.2008.01244.xCrossRefGoogle ScholarPubMed
Stephenson, M. T., Hoyle, R. H., Palmgreen, P., & Slater, M. D. (2003). Brief measures of sensation seeking for screening and large-scale surveys. Drug and Alcohol Dependence, 72, 279286. doi: 10.1016/j.drugalcdep.2003.08.003CrossRefGoogle ScholarPubMed
Verbeken, S., Braet, C., Goossens, L., & van der Oord, S. (2013). Executive function training with game elements for obese children: A novel treatment to enhance self-regulatory abilities for weight-control. Behavior Research and Therapy, 51, 290299. doi: 10.1016/j.brat.2013.02.006CrossRefGoogle ScholarPubMed
Winkielman, P., Knutson, B., Paulus, M., & Trujillo, J. L. (2007). Affective influence on judgments and decisions: Moving toward core mechanisms. Review of General Psychology, 11, 179192. doi: 10.1037/1089-2680.11.2.179CrossRefGoogle Scholar
Zuckerman, M., Eysenck, S., & Eysenck, H. J. (1978). Sensation seeking in England and America: Cross-cultural, age, and sex comparisons. Journal of Consulting and Clinical Psychology, 46, 139149. doi: 10.1037//0022-006X.46.1.139CrossRefGoogle ScholarPubMed

References

Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268277.CrossRefGoogle ScholarPubMed
Bahrami, B., Olsen, K., Latham, P. E., Roepstorff, A., Rees, G., & Frith, C. D. (2010) Optimally interacting minds. Science, 329, 10811085.CrossRefGoogle ScholarPubMed
Baillargeon, R., Rose, M., Scott, R. M., & Hea, Z. (2010). False-belief understanding in infants. Trends in Cognitive Science 14, 110118.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). Another advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry, 38, 813822.CrossRefGoogle ScholarPubMed
Barresi, J., & Moore, C. (1996). Intentional relations and social understanding. Behavioral and Brain Sciences, 19, 107154.CrossRefGoogle Scholar
Blakemore, S.-J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9, 267277.CrossRefGoogle ScholarPubMed
Blakemore, S.-J., Den Ouden, H., Choudhury, S., & Frith, C. (2007). Adolescent development of the neural circuitry for thinking about intentions. Social Cognitive and Affective Neuroscience, 2, 130139.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of rhesus-monkeys. Cerebral Cortex, 4, 7896.CrossRefGoogle ScholarPubMed
Brain Development Cooperative Group (2012). Total and regional brain volumes in a population-based normative sample from 4 to 18 years: The NIH MRI study of normal brain development. Cerebral Cortex, 22, 112. doi: 10.1093/cercor/bhr018CrossRefGoogle Scholar
Burnett, S., Bird, G., Moll, J., Frith, C., & Blakemore, S.-J. (2009). Development during adolescence of the neural processing of social emotion. Journal of Cognitive Neuroscience, 21, 17361750.CrossRefGoogle ScholarPubMed
Burnett, S., Sebastian, C., Cohen-Kadosh, K., & Blakemore, S.-J. (2011). The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies. Neuroscience and Biobehavioral Reviews, 35, 16541664.CrossRefGoogle ScholarPubMed
Carruthers, P. (2009). How we know our own minds: The relationship between mindreading and metacognition. Behavioral and Brain Sciences, 32, 121182.CrossRefGoogle ScholarPubMed
Cragg, B. G. (1975). The development of synapses in the visual system of the cat. Journal of Comparative Neurology, 160, 147166.CrossRefGoogle ScholarPubMed
Dumontheil, I., Apperly, I. A., & Blakemore, S.-J. (2010). Online usage of theory of mind continues to develop in late adolescence. Developmental Science, 13, 331338.CrossRefGoogle ScholarPubMed
Efklides, A. (2008). Metacognition: Defining its facets and levels of functioning in relation to self-regulation and co-regulation. European Psychologist, 13, 277287.CrossRefGoogle Scholar
Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Executive attention and metacognitive regulation. Consciousness and Cognition, 9, 288307.CrossRefGoogle ScholarPubMed
Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., et al. (2013). Critical ages in the life course of the adult brain: Nonlinear subcortical aging. Neurobiology of Aging, 34, 22392247.CrossRefGoogle ScholarPubMed
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Journal of Psychology, 34, 906911.CrossRefGoogle Scholar
Fleming, S. M., & Dolan, R. J. (2012). The neural basis of accurate metacognition. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 13381349.CrossRefGoogle Scholar
Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329, 15411543.CrossRefGoogle ScholarPubMed
Frith, C. D. (2007). The social brain? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 671678.CrossRefGoogle ScholarPubMed
Frith, C. D. (2012). The role of metacognition in human social interactions. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 22132223.CrossRefGoogle ScholarPubMed
Frith, C. D., & Frith, U. (2007). Social cognition in humans. Current Biology, 17, 724732.CrossRefGoogle ScholarPubMed
Frith, U., & Happe, F. (1999). Theory of mind and self-consciousness: What is it like to be autistic? Mind and Language, 14, 122.CrossRefGoogle Scholar
Giedd, J. N., & Rapoport, J. L., (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67, 728734.CrossRefGoogle ScholarPubMed
Gilbert, S. J., Spengler, S., Simons, J. S., Steele, J. D., Lawrie, S. M., et al. (2006). Functional specialization within rostral prefrontal cortex (area 10): A meta-analysis. Journal of Cognitive Neuroscience, 18, 932948.CrossRefGoogle ScholarPubMed
Goel, V., Grafman, J., Sadato, N., & Hallett, M. (1995). Modeling other minds. Neuroreport, 6, 17411746.CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the USA, 101, 81748179.CrossRefGoogle ScholarPubMed
Goldman, A. I. (2006). Simulating minds: The philosophy, psychology, and neuroscience of mindreading. Oxford: Oxford University Press.CrossRefGoogle Scholar
Gunther Moor, B., Op de Macks, Z. A., Güroglu, B., Rombouts, S. A., Van der Molen, M. W., & Crone, E. A. (2012). Neurodevelopmental changes of reading the mind in the eyes. Social Cognitive and Affective Neuroscience, 7, 4452.CrossRefGoogle Scholar
Harris, J. J., Reynell, C., & Attwell, D. (2011). The physiology of developmental changes in BOLD functional imaging signals. Developmental Cognitive Neuroscience, 1, 199216.CrossRefGoogle ScholarPubMed
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160, 106154.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex – developmental changes and effects of aging. Brain Research, 163, 195205.Google ScholarPubMed
Huttenlocher, P. R., Decourten, C., Garey, L. J., & Vanderloos, H. (1982). Synaptogenesis in human visual-cortex – evidence for synapse elimination during normal development. Neuroscience Letters, 33, 247252.CrossRefGoogle ScholarPubMed
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1, 721.CrossRefGoogle ScholarPubMed
Johnson, S. C., Baxter, L. C., Wilder, L. S., Pipe, J. G., Heiserman, J. E., & Prigatano, G. P. (2002). Neural correlates of self-reflection. Brain, 125, 18081814.CrossRefGoogle ScholarPubMed
Keysar, B., Lin, S., & Barr, D. J. (2003). Limits on theory of mind use in adults. Cognition, 89, 2541.CrossRefGoogle ScholarPubMed
Kuhn, D. (2000). Theory of mind, metacognition, and reasoning: A life-span perspective. In Mitchell, P. & Riggs, K. J. (Eds.), Children's reasoning and the mind (pp. 301326). Hove, UK: Psychology Press.Google Scholar
Lebel, C., Gee, M., Camicioli, R., Wieler, M., Martin, W., & Beaulieu, C. (2012). Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage, 60, 340352.CrossRefGoogle ScholarPubMed
Low, L. K., & Cheng, H. J. (2006). Axon pruning: An essential step underlying the developmental plasticity of neuronal connections. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 15311544.CrossRefGoogle ScholarPubMed
Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., et al. (2007). Sexual dimorphism of brain development trajectories during childhood and adolescence. Neuroimage, 36, 10651073.CrossRefGoogle ScholarPubMed
Metcalfe, J., & Finn, B. (2008). Evidence that judgments of learning are causally related to study choice. Psychonomic Bulletin Review, 15, 174179.CrossRefGoogle ScholarPubMed
Mills, K. L., Lalonde, F., Clasen, L., Giedd, J. N., & Blakemore, S.-J. (2014). Developmental changes in the structure of the social brain in late childhood and adolescence. Social Cognitive and Affective Neuroscience, 9, 123131.CrossRefGoogle ScholarPubMed
Mitchell, J. P., Banaji, M. R., & Macrae, C. N. (2005). General and specific contributions of the medial prefrontal cortex to knowledge about mental states. Neuroimage, 28, 757762.CrossRefGoogle ScholarPubMed
Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In Bower, G. (Ed.), The psychology of learning and motivation (Vol. 26, pp. 125169). New York: Academic Press.Google Scholar
Ochsner, K. N., Knierim, K., Ludlow, D., Hanelin, J., Ramachandran, T., & Mackey, S. (2004). Reflecting upon feelings: An fMRI study of neural systems supporting the attribution of emotion to self and other. Journal of Cognitive Neuroscience, 16, 17461772.CrossRefGoogle ScholarPubMed
Paus, T., Keshavan, M., & Giedd, J. N. (2008). Why do many psychiatric disorders emerge during adolescence? Nature Reviews Neuroscience, 9, 947957.CrossRefGoogle ScholarPubMed
Petanjek, Z., Judaš, M., Šimic, G., Rasin, M. R., Uylings, H. B., et al. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Science USA, 108, 1328113286.CrossRefGoogle ScholarPubMed
Pfeifer, J. H., Lieberman, M. D., & Dapretto, M. (2007). “I know you are but what am I?!”: Neural bases of self- and social knowledge retrieval in children and adults. Journal of Cognitive Neuroscience, 19, 13231337.CrossRefGoogle Scholar
Pfeifer, J. H., Masten, C. L., Borofsky, L. A., Dapretto, M., Fuligni, A. J., & Lieberman, M. D. (2009). Neural correlates of direct and reflected self-appraisals in adolescents and adults: When social perspective-taking informs self-perception. Child Development, 80, 10161038.CrossRefGoogle ScholarPubMed
Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., et al. (2011). How does your cortex grow? The Journal of Neuroscience, 31, 71747177.CrossRefGoogle ScholarPubMed
Ruby, P., & Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. Journal of Cognitive Neuroscience, 16, 988999.CrossRefGoogle Scholar
Saxe, R. (2006). Uniquely human social cognition. Current Opinion in Neurobiology, 16, 235239.CrossRefGoogle ScholarPubMed
Sebastian, C. L., Fontaine, N. M. G., Bird, G., Blakemore, S.-J., De Brito, S. A., et al. (2012). Neural processing associated with cognitive and affective theory of mind in adolescents and adults. Social, Cognitive and Affective Neuroscience, 7, 5363.CrossRefGoogle ScholarPubMed
Shamay-Tsoory, S. G., Harari, H., Aharon-Peretz, J., & Levkovitz, Y. (2010). The role of the orbitofrontal cortex in affective theory of mind deficits in criminal offenders with psychopathic tendencies. Cortex, 46, 668677.CrossRefGoogle ScholarPubMed
Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., et al. (2008). Neurodevelopmental trajectories of the human cerebral cortex. Journal of Neuroscience, 28, 35863594.CrossRefGoogle ScholarPubMed
Steinberg, L. (2010). Adolescence (9th Ed.). New York: McGraw-Hill Higher Education.Google Scholar
Tamnes, C. K., Walhovd, K. B., Dale, A. M., Østby, Y., Grydeland, H., et al. (2013). Neuroimage, 68, 6374.CrossRefGoogle Scholar
Van den Bos, W., Van Dijk, E., Westenberg, M., Rombouts, S. A., & Crone, E. A. (2011). Changing brains, changing perspectives: The neurocognitive development of reciprocity. Psychological Science, 22, 6070.CrossRefGoogle ScholarPubMed
Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30, 829858.CrossRefGoogle ScholarPubMed
Vogeley, K., Bussfeld, P., Newen, A., Herrmann, S., Happé, F., et al. (2001). Mind reading: Neural mechanisms of theory of mind and self-perspective. Neuroimage, 14, 170181.CrossRefGoogle ScholarPubMed
Wang, A. T., Lee, S. S., Sigman, M., & Dapretto, M. (2006). Developmental changes in the neural basis of interpreting communicative intent. Social Cognitive and Affective Neuroscience, 1, 107121.CrossRefGoogle ScholarPubMed
Webb, S. J., Monk, C. S., & Nelson, C. A. (2001). Mechanisms of postnatal neuro-biological development: Implications for human development. Developmental Neuropsychology, 19, 147171.CrossRefGoogle Scholar
Weil, L. G., Fleming, S. M., Dumontheil, I., Kilford, E. J., Weil, R. S., et al. (2013). The development of metacognitive ability in adolescence. Consciousness and Cognition, 22, 264271.CrossRefGoogle ScholarPubMed
Westlye, L. T., Walhovd, K. B., Dale, A. M., Biorneryd, A., Due-Tønnessen, P., et al. (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20, 20552068.CrossRefGoogle ScholarPubMed
Zysset, S., Huber, O., Ferstl, E., & von Cramon, D. Y. (2002). The anterior frontomedian cortex and evaluative judgment: An fMRI study. NeuroImage, 15, 983991.CrossRefGoogle ScholarPubMed

References

Amsterdam, B. (1972). Mirror self-image reactions before age two. Developmental Psychobiology, 5, 297305. doi:10.1002/dev.420050403CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Seghete, K. L. M., Claus, E. D., Burgess, G. C., Ruzic, L., & Banich, M. T. (2011). Cognitive control in adolescence: Neural underpinnings and relation to self-report behaviors. PloS One, 6, 114. doi: 10.1371/journal.pone.0021598CrossRefGoogle ScholarPubMed
Badre, D., & D'Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 20822099. doi: 10.1162/jocn.2007.19.12.2082CrossRefGoogle ScholarPubMed
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715. doi:10.1016/0010–0277(94)90018–3CrossRefGoogle ScholarPubMed
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8, 11481150. doi:10.1038/nn1516CrossRefGoogle ScholarPubMed
Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12, 201208. doi: 10.1016/j.tics.2008.02.009CrossRefGoogle ScholarPubMed
Broderick, P. C. (2013). Learning to BREATHE: A mindfulness curriculum for adolescents to cultivate emotion regulation, attention, and performance. Oakland, CA: New Harbinger.Google Scholar
Bryck, R. L., & Fisher, P. A. (2012). Training the brain: Practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science. American Psychologist, 67, 87100. doi: 10.1037/a0024657CrossRefGoogle ScholarPubMed
Bunge, S. A., & Zelazo, P. D. (2006). A brain-based account of the development of rule use in childhood. Current Directions in Psychological Science, 15, 118121. doi: 10.1111/j.0963–7214.2006.00419.xCrossRefGoogle Scholar
Buodo, G., Sarlo, M., & Palomba, D. (2002). Attentional resources measured by reaction times highlight differences within pleasant and unpleasant, high arousing stimuli. Motivation and Emotion, 26, 123138. doi: 10.1023/A:1019886501965CrossRefGoogle Scholar
Carlson, S. M., Davis, A. C., & Leach, J. G. (2005). Less is more: Executive function and symbolic representation in preschool children. Psychological Science, 16, 609616. doi: 10.1111/j.1467–9280.2005.01583.xCrossRefGoogle ScholarPubMed
Carlson, S. M., & Moses, L. J. (2001). Individual differences in inhibitory control and children's theory of mind. Child Development, 72, 10321053. doi: 10.1111/1467–8624.00333CrossRefGoogle ScholarPubMed
Carlson, S. M., Zelazo, P. D., & Faja, S. (2013). Executive function. In Zelazo, P. D. (Ed.), Oxford handbook of developmental psychology (Vol. 1, pp. 706743). New York: Oxford University Press.Google Scholar
Christoff, K., & Gabrieli, J. D. E. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28, 168186. doi: 10.3758/BF03331976CrossRefGoogle Scholar
Cunningham, W. A., & Zelazo, P. D. (2007). Attitudes and evaluations: A social cognitive neuroscience perspective. Trends in Cognitive Sciences, 11, 97104. doi: 10.1016/j.tics.2006.12.005CrossRefGoogle ScholarPubMed
Cunningham, W. A., Zelazo, P. D., Packer, D. J., & Van Bavel, J. J. (2007). The Iterative Reprocessing Model: A multi-level framework for attitudes and evaluation. Social Cognition, 25, 736760. doi: 10.1521/soco.2007.25.5.736CrossRefGoogle Scholar
Damon, W., & Hart, D. (1982). The development of self-understanding from infancy through adolescence. Child Development, 53, 841864. doi:10.1177/0272431686063007CrossRefGoogle Scholar
Davidson, M. C., Amso, D Cruess-Anderson, L, & Diamond, A. (2006). Development of cognitive control and executive functions from 4–13 years: Evidence from manipulations of memory, inhibition and task switching. Neuropsychologia, 44, 20372078.CrossRefGoogle Scholar
Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959964. doi: 10.1126/science.1204529CrossRefGoogle Scholar
Duckworth, A. L., Grant, H., Loew, B., Oettingen, G., & Gollwitzer, P. M. (2011). Self-regulation strategies improve self-discipline in adolescents: Benefits of mental contrasting and implementation intentions. Educational Psychology, 31, 1726.CrossRefGoogle Scholar
Emerson, M. J., & Miyake, A. (2003). The role of inner speech in task switching: A dual-task investigation. Journal of Memory and Language, 48, 148168. doi: 10.1080/01443410.2010.506003CrossRefGoogle Scholar
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2012). N2 amplitude as a neural marker of executive function in young children: An ERP study of children who switch versus perseverate on the dimensional change card sort. Developmental Cognitive Neuroscience, 2, 4958. doi: 10.1016/j.dcn.2011.12.002CrossRefGoogle ScholarPubMed
Espinet, S. D., Anderson, J. E., & Zelazo, P. D. (2013). Reflection training improves executive function in preschool-age children: Behavioral and neural effects. Developmental Cognitive Neuroscience, 4, 315. doi: 10.1016/j.dcn.2012.11.009CrossRefGoogle ScholarPubMed
Frye, D., Zelazo, P. D., & Palfai, T. (1995). Theory of mind and rule-based reasoning. Cognitive Development, 10, 483527. doi:10.1016/0885–2014(95)90024–1CrossRefGoogle Scholar
Fujita, K., Trope, Y., Liberman, N., & Levin-Sagi, M. (2006). Construal levels and self-control. Journal of Personality and Social Psychology, 90, 351367. doi: 10.1037/0022–3514.90.3.351CrossRefGoogle ScholarPubMed
Gardner, M., & Steinberg, L. (2005). Peer influence on risk taking, risk preference, and risky decision making in adolescence and adulthood: An experimental study. Developmental Psychology, 41, 625635. doi: 10.1037/0012–1649.41.4.625CrossRefGoogle ScholarPubMed
Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101, 81748179. doi: 10.1073/pnas.0402680101CrossRefGoogle ScholarPubMed
Gollwitzer, P. M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493503. doi: 10.1037/0003–066X.54.7.493CrossRefGoogle Scholar
Gollwitzer, P. M., & Oettingen, G. (2011). Planning promotes goal striving. In Vohs, K. D. & Baumeister, R. F. (Eds.), Handbook of self-regulation: Research, theory, and applications (2nd ed., pp. 162185). New York: Guilford.Google Scholar
Gollwitzer, P. M., Wieber, F., Meyers, A. L., & McCrea, S. M. (2010). How to maximize implementation intention effects. In Agnew, C. R., Carlston, D. E., Graziano, W. G., & Kelly, J. R. (Eds.), Then a miracle occurs: Focusing on behavior in social psychological theory and research (pp. 137161). New York: Oxford University Press.Google Scholar
Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58, 539559. doi: 10.2307/1130197CrossRefGoogle ScholarPubMed
Happaney, K., Zelazo, P. D., & Stuss, D. T. (2004). Development of orbitofrontal function: Current themes and future directions. Brain and Cognition, 55, 110.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley & Sons.Google Scholar
Huttenlocher, P. R. (2002). Neural plasticity: The effects of environment on the development of the cerebral cortex. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Jacques, S., & Zelazo, P. D. (2001). The Flexible Item Selection Task (FIST): A measure of executive function in preschoolers. Developmental Neuropsychology, 20, 573591. doi: 10.1207/S15326942DN2003_2CrossRefGoogle Scholar
Jacques, S., & Zelazo, P. D. (2005). Language and the development of cognitive flexibility: Implications for theory of mind. In Astington, J. W. & Baird, J. A. (Eds.), Why language matters for theory of mind (pp. 144162). New York: Oxford University Press.CrossRefGoogle Scholar
James, W. (1984 [1892]). Psychology: The briefer course. New York: Harper.Google Scholar
Johnson, A. E., Forston, J. L., & Zelazo, P. D. (2013). Mindfulness training in preschool children. Manuscript submitted for publication.Google Scholar
Kappes, A., Singmann, H., & Oettingen, G. (2012). Mental contrasting instigates goal-pursuit by linking obstacles of reality with instrumental behavior. Journal of Experimental Social Psychology, 48, 811818. doi: 10.1016/j.jesp.2012.02.002CrossRefGoogle Scholar
Kappes, A., Wendt, M., Reinelt, T., & Oettingen, G. (2013). Mental contrasting changes the meaning of reality. Journal of Experimental Social Psychology, 49, 797810. doi: 10.1016/j.jesp.2013.03.010CrossRefGoogle Scholar
Karbach, J., & Kray, J. (2007). Developmental changes in switching between mental task sets: The influence of verbal labeling in childhood. Journal of Cognition and Development, 8, 205236. doi: 10.1080/15248370701202430CrossRefGoogle Scholar
Kerr, A., & Zelazo, P. D. (2004). Development of “hot” executive function: The Children's Gambling Task. Brain and Cognition, 55, 148157. doi: 10.1016/S0278–2626(03)00275–6CrossRefGoogle ScholarPubMed
Kharitonova, M., Chien, S., Colunga, E., & Munakata, Y. (2009). More than a matter of getting “unstuck”: Flexible thinkers use more abstract representations than perseverators. Developmental Science, 12, 662669. doi: 10.1111/j.1467–7687.2008.00799.xCrossRefGoogle ScholarPubMed
Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., et al. (2005). Computerized training of working memory in children with ADHD: A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 177186. doi: 10.1097/00004583–200502000–00010CrossRefGoogle ScholarPubMed
Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 11811185. doi: 10.1126/science.1088545CrossRefGoogle ScholarPubMed
Kray, J., Eber, J., & Karbach, J. (2008). Verbal self-instructions in task switching: A compensatory tool for action-control deficits in childhood and old age? Developmental Science, 11, 223236. doi: 10.1111/j.1467–7687.2008.00673.xCrossRefGoogle ScholarPubMed
Luciana, M., Conklin, H. M., Hooper, C. J., & Yarger, R. S. (2005). The development of nonverbal working memory and executive control processes in adolescents. Child Development, 76, 697712. doi: 10.1111/j.1467–8624.2005.00872.xCrossRefGoogle ScholarPubMed
Luria, A. R. (1959). The directive function of speech in development and dissolution. Word, 15, 341352.CrossRefGoogle Scholar
Luria, A. R. (1961). The role of speech in the regulation of normal and abnormal behavior. Oxford: Liveright.Google Scholar
Manes, F., Sahakian, B., Clark, L., Rogers, R., Antoun, N., et al. (2002). Decision-making processes following damage to prefrontal cortex. Brain, 125, 624639. doi: 10.1093/brain/awf049CrossRefGoogle ScholarPubMed
Marcovitch, S., & Zelazo, P. D. (1999). The A-not-B error: Results from a logistic meta-analysis. Child Development, 70, 12971313. doi: 10.1111/1467–8624.00095CrossRefGoogle Scholar
May, A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends in Cognitive Sciences, 15, 475482. doi: 10.1016/j.tics.2011.08.002CrossRefGoogle ScholarPubMed
Moore, S., & Gullone, E. (1996). Predicting adolescent risk behavior using a personalized cost-benefit analysis. Journal of Youth and Adolescence, 25, 343359. doi: 10.1007/BF01537389CrossRefGoogle Scholar
Munakata, Y., Snyder, H. R., & Chatham, C. H. (2012). Developing cognitive control: Three key transitions. Current Directions in Psychological Science, 21, 7177. doi: 10.1177/0963721412436807CrossRefGoogle ScholarPubMed
Nelson, E. E., Leibenluft, E., McClure, E., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35, 163174. doi: 10.1017/S0033291704003915CrossRefGoogle ScholarPubMed
Oettingen, G. (1999). Free fantasies about the future and the emergence of developmental goals. In Brandtstädter, J. & Lerner, R. M. (Eds.), Action and self-development: Theory and research through the life span (pp. 315342). Thousand Oaks, CA: Sage Publications.Google Scholar
Oettingen, G. (2012). Future thought and behaviour change. European Review of Social Psychology, 23, 163. doi: 10.1080/10463283.2011.643698CrossRefGoogle Scholar
Oettingen, G., & Gollwitzer, P. M. (2010). Strategies of setting and implementing goals: Mental contrasting and implementation intentions. In Maddux, J. E. & Tangney, J. P. (Eds.), Social psychological foundations of clinical psychology (pp. 114135). New York: Guilford.Google Scholar
Olesen, P. J., Westerberg, H., & Klingberg, T. (2003). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 7579. doi: 10.1038/nn1165CrossRefGoogle ScholarPubMed
Ortner, C. N. M., Kilner, S. J., & Zelazo, P. D. (2007). Mindfulness meditation and reduced emotional interference on a cognitive task. Motivation and Emotion, 31, 271283. doi: 10.1007/s11031–007–9076–7CrossRefGoogle Scholar
Perner, J., & Lang, B. (1999). Development of theory of mind and executive control. Trends in Cognitive Sciences, 3, 337344. doi: 10.1016/S1364–6613(99)01362–5CrossRefGoogle ScholarPubMed
Perner, J., Lang, B., & Kloo, D. (2002). Theory of mind and self-control: More than a common problem of inhibition. Child Development, 73, 752767. doi: 10.1111/1467–8624.00436CrossRefGoogle ScholarPubMed
Povinelli, D. J., Landau, K. R., & Perilloux, H. K. (1996). Self-recognition in young children using delayed versus live feedback: Evidence of a developmental asynchrony. Child Development, 67, 15401554. doi: 10.2307/1131717CrossRefGoogle ScholarPubMed
Prencipe, A., Kesek, A., Cohen, J., Lamm, C., Lewis, M. D., & Zelazo, P. D. (2011). Development of hot and cool executive function during the transition to adolescence. Journal of Experimental Child Psychology, 108, 621637. doi: 10.1016/j.jecp.2010.09.008CrossRefGoogle ScholarPubMed
Rochat, P., Broesch, T., & Jayne, K. (2012). Social awareness and early self-recognition. Consciousness and Cognition, 21, 14911497. doi: 10.1016/j.concog.2012.04.007CrossRefGoogle ScholarPubMed
Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., & Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences, 102, 1493114936. doi: 10.1073/pnas.0506897102CrossRefGoogle ScholarPubMed
Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological Review, 117, 440463. doi: 10.1037/a0018963CrossRefGoogle ScholarPubMed
Vygotsky, L. (1962). Thought and language. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26, 10031017.CrossRefGoogle ScholarPubMed
Zelazo, P. D. (2004). The development of conscious control in childhood. Trends in Cognitive Sciences, 8, 1217. doi: 10.1016/j.tics.2003.11.001CrossRefGoogle ScholarPubMed
Zelazo, P. D. (2006). The Dimensional Change Card Sort (DCCS): A method of assessing executive function in children. Nature Protocols, 1, 297301. doi: 10.1038/nprot.2006.46CrossRefGoogle ScholarPubMed
Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K., Beaumont, J. L., & Weintraub, S. (2013). NIH Toolbox Cognition Battery (NIHTB-CB): Measuring executive function and attention. Monographs of the Society for Research in Child Development, 1633.CrossRefGoogle Scholar
Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6, 354360. doi: 10.1111/j.1750–8606.2012.00246.xCrossRefGoogle Scholar
Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules and using them. Cognitive Development, 11, 3763. doi: 10.1016/S0885–2014(96)90027–1CrossRefGoogle Scholar
Zelazo, P. D., & Lyons, K. E. (2012). The potential benefits of mindfulness training in early childhood: A developmental social cognitive neuroscience perspective. Child Development Perspectives, 6, 154160. doi: 10.1111/j.1750–8606.2012.00241.xCrossRefGoogle Scholar
Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. In Goswami, U (Ed.), Blackwell handbook of childhood cognitive development (pp. 445469). Malden: Blackwell Publishing.CrossRefGoogle Scholar
Zelazo, P. D., Müller, U., Frye, D., & Marcovitch, S. (2003). The development of executive function in early childhood. Monographs of the Society for Research in Child Development, 68, vii137. doi: 10.1111/j.1540–5834.2003.06803001.xCrossRefGoogle ScholarPubMed
Zelazo, P. D., & Sommerville, J. A. (2001). Levels of consciousness of the self in time. In Moore, C. & Lemmon, K. (Eds.), The self in time: Developmental perspectives (pp. 229252). Mahwah, NJ: Lawrence Erlbaum Associates Publishers.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×