Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T02:05:24.818Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 May 2019

Keith Moffatt
Affiliation:
University of Cambridge
Emmanuel Dormy
Affiliation:
Ecole Normale Supérieure, Paris
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1970. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Dover.Google Scholar
Acheson, D. J. & Hide, R. 1973. Hydromagnetics of rotating fluids. Rep. Prog. Phys., 36, 159171.CrossRefGoogle Scholar
Alexakis, A. 2011. Searching for the fastest dynamo: Laminar ABC flows. Phys. Rev. E, 84, 026321.CrossRefGoogle ScholarPubMed
Alfvén, H. 1942. On the existence of electromagnetic-hydrodynamic waves. Arkiv. Mat. Astron. Fysik, 29B, 7 pp.Google Scholar
Allan, D. W. 1962. On the behaviour of systems of coupled dynamos. Proc. Camb. Phil. Soc., 58, 671693.CrossRefGoogle Scholar
Altschuler, M. D., Trotter, D. E., Newkirk, G., Jr. & Howard, R. 1974. The large-scale solar magnetic field. Solar Phys., 39, 317.CrossRefGoogle Scholar
Alves, J., Bertout, C., Combes, F., et al. 2014. Planck 2013 results. Astron. Astrophys., 571, E1.CrossRefGoogle Scholar
Amari, T., Canou, A. & Aly, J.-J. 2014. Characterizing and predicting the magnetic environment leading to solar eruptions. Nature, 514, 465469.CrossRefGoogle ScholarPubMed
Amari, T., Canou, A., Aly, J.-J., Delyon, F. & Alauzet, F. 2018. Magnetic cage and rope as the key for solar eruptions. Nature, 554, 211215.CrossRefGoogle ScholarPubMed
Ampère, A.-M. 1822. Recueil d’observations electro-dynamiques. Crochard.Google Scholar
Anderson, B. J., Acuña, M. H., Korth, H., et al. 2008. The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science, 321, 8285.CrossRefGoogle ScholarPubMed
Anderson, B. J., Johnson, C. L., Korth, H., et al. 2011. The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333, 18591862.CrossRefGoogle ScholarPubMed
André, J. D. & Lesieur, M. 1977. Evolution of high Reynolds number isotropic three-dimensional turbulence; influence of helicity. J. Fluid Mech., 81, 187208.CrossRefGoogle Scholar
Andrews, D. G. & Hide, R. 1975. Hydromagnetic edge waves in a rotating stratified fluid. J. Fluid Mech., 72, 593603.CrossRefGoogle Scholar
Andrews, D. G. & McIntyre, M. E. 1978. An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646.CrossRefGoogle Scholar
Angel, J. R. P. 1975. Strong magnetic fields in white dwarfs. Ann. N. Y. Acad. Sci., 257, 8081.CrossRefGoogle Scholar
Anselmet, F., Gagne, Y., Hopfinger, E. J. & Antonia, R. A. 1984. High-order velocity structure functions in turbulent shear flows. J. Fluid Mech., 140, 6389.CrossRefGoogle Scholar
Anufriev, A. P. & Braginskii, S. I. 1975. Effect of a magnetic field on the stream of a liquid rotating at a rough surface. Magnetohydrodynamics, 11, 461467.Google Scholar
Archontis, V. 2000. Linear, Non-Linear and Turbulent Dynamos. PhD thesis, University of Copenhagen, Denmark. Available online at www.astro.ku.dk/bill.Google Scholar
Archontis, V., Dorch, S. B. F. & Nordlund, Å. 2003. Numerical simulations of kinematic dynamo action. Astron. Astrophys., 397, 393401.CrossRefGoogle Scholar
Archontis, V., Dorch, S. B. F. & Nordlund, Å. 2007. Nonlinear MHD dynamo operating at equipartition. Astron. Astrophys., 472, 715– 726.CrossRefGoogle Scholar
Arnold, V. I. 1965a. Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad. Sci.Paris, 261, 1720.Google Scholar
Arnold, V. I. 1965b. Variational principle for three-dimensional steady-state flows of an ideal fluid. J. Appl. Math. Mech., 29, 10021008.CrossRefGoogle Scholar
Arnold, V. I. 1974. The asymptotic Hopf invariant and its applications. Pages 229–256 of: Proc. Summer School in Diff. Eqs. at Dilizhan, Erevan, Armenia [in Russian]. Armenian Academy of Sciences, Erevan. English translation: 1986 Sel. Math. Sov. 5, 327345.Google Scholar
Arnold, V. I. & Korkina, E. I. 1983. The growth of a magnetic field in the three-dimensional steady flow of an incompressible fluid. Moskovskii Univ. Vestnik Seriia Mat. Mekh., 1, 4346.Google Scholar
Arter, W. 1985. Magnetic-flux transport by a convecting layer including dynamical effects. Geophys. Astrophys. Fluid Dyn., 31, 311344.CrossRefGoogle Scholar
Arter, W., Proctor, M. R. E. & Galloway, D. J. 1982. New results on the mechanism of magnetic flux pumping by three-dimensional convection. Mon. Not. R. Astron. Soc., 201, 57P–61P.CrossRefGoogle Scholar
Babcock, H. W. 1947. Zeeman effect in stellar spectra. Astrophys. J., 105, 105119.CrossRefGoogle Scholar
Babcock, H. W. 1961. The topology of the Sun’s magnetic field and the 22-year cycle. Astrophys. J., 133, 572.CrossRefGoogle Scholar
Babcock, H. W. & Babcock, H. D. 1955. The Sun’s magnetic field 1952–1954. Astrophys. J., 121, 349366.CrossRefGoogle Scholar
Backus, G. E. 1957. The axisymmetric self-excited fluid dynamo. Astrophys. J., 125, 500– 524.CrossRefGoogle Scholar
Backus, G. E. 1958. A class of self-sustaining dissipative spherical dynamos. Ann. Phys., 4, 372447.CrossRefGoogle Scholar
Backus, G. E. & Chandrasekhar, S. 1956. On Cowling’s theorem on the impossibility of self-maintained axisymmetric homogeneous dynamos. Proc. Natl. Acad. Sci. U.S.A., 42, 105109.CrossRefGoogle Scholar
Bajer, K. 2005. Abundant singularities. Fluid. Dyn. Res., 36, 301317.CrossRefGoogle Scholar
Bajer, K. & Moffatt, H. K. 1990. On a class of steady confined Stokes flows with chaotic streamlines. J. Fluid Mech., 212, 337363.CrossRefGoogle Scholar
Bajer, K. & Moffatt, H. K. 2013. Magnetic relaxation, current sheets, and structure formation in an extremely tenuous fluid medium. Astrophys. J., 779, 169182.CrossRefGoogle Scholar
Bajer, K., Bassom, A. P. & Gilbert, A. D. 2001. Accelerated diffusion in the centre of a vortex. J. Fluid Mech., 437, 395411.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1991. A powerful local shear instability in weakly magnetized disks. I – Linear analysis. Astrophys. J., 376, 214222.CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F. 1992. A powerful local shear instability in weakly magnetized disks. III. Long-term evolution in a shearing sheet. Astrophys. J., 400, 595609.CrossRefGoogle Scholar
Balbus, S. A., Latter, H. & Weiss, N. 2012. Global model of differential rotation in the Sun. Mon. Not. R. Astron. Soc., 420, 24572466.CrossRefGoogle Scholar
Barton, C. 2002. Survey tracks current position of south magnetic pole. EOS Transactions, 83, 291.CrossRefGoogle Scholar
Batchelor, G. K. 1950. On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. A, 201, 405416.Google Scholar
Batchelor, G. K. 1952. The effect of homogeneous turbulence on material lines and surfaces. Proc. R. Soc. A, 213, 349366.Google Scholar
Batchelor, G. K. 1953. The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Batchelor, G. K. 1956. On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech., 1, 177190.CrossRefGoogle Scholar
Batchelor, G. K. 1959. Small-scale variation of convected quantities like temperature in turbulent fluid, I. General discussion and the case of small conductivity. J. Fluid Mech., 5, 113133.CrossRefGoogle Scholar
Batchelor, G. K. 1967. An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Beck, J. G. 2000. A comparison of differential rotation measurements. Sol. Phys., 191, 4770.CrossRefGoogle Scholar
Beck, R. 2012. Magnetic fields in galaxies. Space Sci. Rev., 166, 215230.CrossRefGoogle Scholar
Beck, R. 2016. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev., 24, 4.Google Scholar
Beck, R., Brandenburg, A., Moss, D., Shukurov, A. & Sokoloff, D. 1996. Galactic magnetism: recent developments and perspectives. Ann Rev. Astron. Astrophys., 34, 155– 206.CrossRefGoogle Scholar
Beer, J., Tobias, S. M. & Weiss, N. O. 1998. An active Sun throughout the Maunder minimum. Sol. Phys., 181, 237249.CrossRefGoogle Scholar
Bennett, W. H. 1934. Magnetically self-focussing streams. Phys. Rev., 45, 890897.CrossRefGoogle Scholar
Berger, M. A. & Field, G. B. 1984. The topological properties of magnetic helicity. J. Fluid Mech., 147, 133148.CrossRefGoogle Scholar
Berhanu, M., Monchaux, R., Fauve, S., et al. 2007. Magnetic field reversals in an experimental turbulent dynamo. Europhys. Lett., 77, 59001.CrossRefGoogle Scholar
Berkhuijsen, E. M., Horellou, C., Krause, M., et al. 1997. Magnetic fields in the disk and halo of M51. Astron. Astrophys., 318, 700720.Google Scholar
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958. An energy principle for hydromagnetic stability problems. Proc. R. Soc. London, 244, 1740.Google Scholar
Betchov, R. 1961. Semi-isotropic turbulence and helicoidal flows. Phys. Fluids, 4, 925– 926.CrossRefGoogle Scholar
Blandford, R. D. & Payne, D. G. 1982. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc., 199, 883903.CrossRefGoogle Scholar
Bloxham, J. & Jackson, A. 1992. Time-dependent mapping of the magnetic field at the core–mantle boundary. J. Geophys. Res., 97(B7), 1963719563.CrossRefGoogle Scholar
Bloxham, J., Gubbins, D. & Jackson, A. 1989. Geomagnetic secular variation. Phil. Trans. R. Soc. London, Ser. A, 329, 415502.Google Scholar
Bodin, H. A. B. 1984. Physics of reversed field pinch. In: Proceedings of the 1984 International Conference on Plasma Physics, vol. 1, pp. 417454. EEC, Brussels.Google Scholar
Bodin, H. A. B. 1990. The reversed field pinch. Nuclear Fusion, 30, 1717.CrossRefGoogle Scholar
Bogoyavlenskij, O. 2017. Vortex knots for the spheromak fluid flow and their moduli spaces. J. Math. Anal. Appl., 450, 2147.CrossRefGoogle Scholar
Bondi, H. 1986. The rigid body dynamics of unidirectional spin. Proc. R. Soc. London, Ser. A, 405, 265274.Google Scholar
Bondi, H. & Gold, T. 1950. On the generation of magnetism by fluid motion. Mon. Not. R. Astron. Soc., 110, 607611.CrossRefGoogle Scholar
Boothby, W. M. 1986. An Introduction to Differentiable Manifolds and Riemannian Geometry. 2nd ed. Academic Press. [For Frobenius theorem, see §IV.8.]Google Scholar
Bourne, M., MacNiocaill, C., Thomas, A. L., Knudsen, M. F. & Henderson, G. M. 2012. Rapid directional changes associated with a 6.5 kyr-long Blake geomagnetic excursion at the Blake–Bahama outer ridge. Earth Planet. Sci. Lett., 333, 2134.CrossRefGoogle Scholar
Bouya, I. & Dormy, E. 2013. Revisiting the ABC flow dynamo. Phys. Fluids, 25, 037103.CrossRefGoogle Scholar
Bouya, I. & Dormy, E. 2015. Toward an asymptotic behaviour of the ABC dynamo. EPL, 110, 14003.CrossRefGoogle Scholar
Brachet, M. E., Meiron, D. I., Orszag, S. A., et al. 1983. Small-scale structure of the Taylor–Green vortex. J. Fluid Mech., 130, 411452.CrossRefGoogle Scholar
Braginskii, S. I. 1964a. Kinematic models of the Earth’s hydromagnetic dynamo. Geomagn. Aeron., 4, 572583.Google Scholar
Braginskii, S. I. 1964b. Self excitation of a magnetic field during the motion of a highly conducting fluid. Sov. Phys. JETP, 20, 726735.Google Scholar
Braginskii, S. I. 1964c. Theory of the hydromagnetic dynamo. Sov. Phys. JETP, 20, 14621471.Google Scholar
Braginskii, S. I. 1967. Magnetic waves in the Earth’s core. Geomagn. Aeron., 7, 851859.Google Scholar
Braginskii, S. I. 1970. Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length. Geomagn. Aeron., 10, 18.Google Scholar
Braginskii, S. I. 1975. An almost axially symmetric model of the hydromagnetic dynamo of the Earth, I. Geomagn. Aeron., 15, 149156.Google Scholar
Braginskii, S. I. 1993. MAC-oscillations of the hidden ocean of the core. J. Geomagn. Geoelectr., 45,Google Scholar
Braginskii, S. I. 1517–1538. 1994. The nonlinear dynamo and model-Z. In: Lectures on Solar and Planetary Dynamos, pp. 267–304 Cambridge University Press.Google Scholar
Braginskii, S. I. 1999. Dynamics of the stably stratified ocean at the top of the core. Phys. Earth Planet. Inter., 111, 2134.CrossRefGoogle Scholar
Braginskii, S. I. 2006. Formation of the stratified ocean of the core. Earth Planet. Sci. Lett., 243, 650– 656.Google Scholar
Braginsky, S. I. & Meytlis, V. P. 1990. Local turbulence in the Earth’s core. Geophys. Astrophys. Fluid Dyn., 55, 7187.CrossRefGoogle Scholar
Braginsky, S. I. & Roberts, P. H. 1995. Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn., 79, 197.CrossRefGoogle Scholar
Brandenburg, A. 2005. Importance of magnetic helicity in dynamos. In: Cosmic Magnetic Fields, pp. 219–253. Springer.Google Scholar
Brandenburg, A. & Subramanian, K. 2005. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep., 417, 1209.CrossRefGoogle Scholar
Brandenburg, A., Moss, D. & Soward, A. M. 1998. New results for the Herzenberg dynamo: Steady and oscillatory solutions. Proc. R. Soc. London, Ser. A, 454, 1283– 1300.CrossRefGoogle Scholar
Brandon, A. D. & Walker, R. J. 2005. The debate over core–mantle interaction. Earth Planet. Sci. Lett., 232, 211225.CrossRefGoogle Scholar
Brissaud, A., Frisch, U., Léorat, J., Lesieur, M. & Mazure, A. 1973. Helicity cascades in fully developed isotropic turbulence. Phys. Fluids, 16, 13661367.CrossRefGoogle Scholar
Brummell, N. H., Cattaneo, F. & Tobias, S. M. 2001. Linear and nonlinear dynamo properties of time-dependent ABC flows. Fluid Dyn. Res., 28, 237265.CrossRefGoogle Scholar
Brush, S. G. 1980. Discovery of the Earth’s core. Am. J. Phys., 48, 705724.CrossRefGoogle Scholar
Buffett, B. A. 2002. Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo. Geophys. Res. Lett., 29, GL014609.CrossRefGoogle Scholar
Buffett, B. A. 2014. Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature, 507, 484487.CrossRefGoogle ScholarPubMed
Bullard, E. C. 1955. The stability of a homopolar dynamo. Proc. Camb. Phil. Soc., 51, 744760.CrossRefGoogle Scholar
Bullard, E. C. 1968. Reversals of the Earth’s magnetic field. Phil. Trans. R. Soc. London, Ser. A, 263, 481524.Google Scholar
Bullard, E. C. & Gellman, H. 1954. Homogeneous dynamos and terrestrial magnetism. Phil. Trans. R. Soc. London, Ser. A, 247, 213278.Google Scholar
Bullard, E. C. & Gubbins, D. 1973. Generation of magnetic fields by fluid motions of global scale. Geophys. Fluid Dyn., 8, 4356.CrossRefGoogle Scholar
Bullard, E. C., Freedman, C., Gellman, H. & Nixon, J. 1950. The westward drift of the Earth’s magnetic field. Phil. Trans. R. Soc. London, Ser. A, 243, 6792.Google Scholar
Bullen, K. E. 1946. A hypothesis on compressibility at pressures of the order of a million atmospheres. Nature, 157, 405.CrossRefGoogle Scholar
Burgers, J. M. 1948. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech., 1, 171199.CrossRefGoogle Scholar
Bushby, P. J. & Tobias, S. M. 2007. On predicting the solar cycle using mean-field models. Astrophys. J., 661, 12891296.CrossRefGoogle Scholar
Busse, F. H. 1968. Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech., 33, 739751.CrossRefGoogle Scholar
Busse, F. H. 1970. Thermal instabilities in rapidly rotating systems. J. Fluid Mech., 44, 441460.CrossRefGoogle Scholar
Busse, F. H. 1973. Generation of magnetic fields by convection. J. Fluid Mech., 57, 529544.CrossRefGoogle Scholar
Busse, F. H. 1975a. A model of the geodynamo. Geophys. J. R. Astron. Soc., 42, 837839.Google Scholar
Busse, F. H. 1975b. A necessary condition for the geodynamo. J. Geophys. Res., 80, 278280.CrossRefGoogle Scholar
Busse, F. H. 1976. Generation of planetary magnetism by convection. Phys. Earth Planet Inter., 12, 350358.CrossRefGoogle Scholar
Busse, F. H. 1992. Dynamic theory of planetary magnetism and laboratory experiments. In: Friedrich, R. & Wunderlin, A. (eds.), Evolution of Dynamical Structures in Complex Systems, pp. 197–208. Springer Proc. Phys., vol. 69. Springer.Google Scholar
Busse, F. H. & Carrigan, C. R. 1974. Convection induced by centrifugal buoyancy. J. Fluid Mech., 62, 579592.CrossRefGoogle Scholar
Busse, F. H., Hartung, G., Jaletzky, M. & Sommermann, G. 1998. Experiments on thermal convection in rotating systems motivated by planetary problems. Dyn. Atmos. Oceans, 27, 161174.CrossRefGoogle Scholar
Buz, J., Weiss, B. P., Tikoo, S. M., et al. 2015. Magnetism of a very young lunar glass. J. Geophys. Res., 120, 17201735.CrossRefGoogle Scholar
Calkins, M. A., Julien, K., Tobias, S. M. & Aurnou, J. M. 2015. A multiscale dynamo model driven by quasi-geostrophic convection. J. Fluid Mech., 780, 143166.CrossRefGoogle Scholar
Calkins, M. A., Long, L., Nieves, D., Julien, K. & Tobias, S. M. 2016. Convection-driven kinematic dynamos at low Rossby and magnetic Prandtl numbers. Phys. Rev. Fluids, 1, 083701.CrossRefGoogle Scholar
Călugăreanu, G. 1959. L’intégrale de Gauss et l’analyse des nœuds tridimensionnels. Rev. Math. Pure Appl., 4, 520.Google Scholar
Cameron, R. & Galloway, D. J. 2006. Saturation properties of the Archontis dynamo. Mon. Not. R. Astron. Soc., 365, 735746.CrossRefGoogle Scholar
Cao, H., Dougherty, M. K., Khurana, K. K., et al. 2017. Saturn’s internal magnetic field revealed by Cassini grand finale. AGU Fall Meeting Abstracts.CrossRefGoogle Scholar
Cao, H., Russell, C. T., Christensen, U. R., Dougherty, M. K. & Burton, M. E. 2011. Saturn’s very axisymmetric magnetic field: No detectable secular variation or tilt. Earth Planet. Sci. Lett., 304, 2228.CrossRefGoogle Scholar
Cardin, P. 1992. Aspects de la convection dans la terre: Couplage des manteaux inférieur et supérieur, convection thermique du noyau liquide. PhD thesis, Thèse Paris VI.Google Scholar
Carrigan, C. R. & Busse, F. H. 1983. An experimental and theoretical investigation of the onset of convection in rotating spherical shells. J. Fluid Mech., 126, 287305.CrossRefGoogle Scholar
Cattaneo, F. & Hughes, D. W. 1996. Nonlinear saturation of the turbulent α effect. Phys. Rev. E, 54, R4532(R).CrossRefGoogle ScholarPubMed
Cattaneo, F. & Hughes, D. W. 2009. Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers. Mon. Not. R. Astron. Soc. Lett., 395, L48–L51.CrossRefGoogle Scholar
Cattaneo, F. & Tobias, S. M. 2009. Dynamo properties of the turbulent velocity field of a saturated dynamo. J. Fluid Mech., 621, 205214.CrossRefGoogle Scholar
Cattaneo, F. & Vainshtein, S. I. 1991. Suppression of turbulent transport by a weak magnetic field. Astrophys. J., 376, L21–L24.CrossRefGoogle Scholar
Cattaneo, F., Hughes, D. W. & Thelen, J.-C. 2002. The nonlinear properties of a large-scale dynamo driven by helical forcing. J. Fluid Mech., 456, 219237.CrossRefGoogle Scholar
Chamberlain, J. A. & Carrigan, C. R. 1986. An experimental investigation of convection in a rotating sphere subject to time varying thermal boundary conditions. Geophys. Astrophys. Fluid Dyn., 35, 303327.CrossRefGoogle Scholar
Chandrasekhar, S. 1960. The hydrodynamic stability of inviscid flow between coaxial cylinders. Proc. Natl. Acad. Sci. U.S.A., 46, 137141.CrossRefGoogle ScholarPubMed
Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability. Oxford.Google Scholar
Chapman, S. & Bartels, J. 1940. Geomagnetism: Vol. I, Geomagnetic and Related Phenomena; Vol. II, Analysis of the Data and physical Theories. Clarendon.Google Scholar
Charbonneau, P. 2010. Dynamo models of the solar cycle. Living Rev. Sol. Phys., 7, 3.CrossRefGoogle Scholar
Charbonneau, P. 2014. Solar dynamo theory. Ann. Rev. Astron. Astrophys., 52, 251290.CrossRefGoogle Scholar
Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., et al. 1999. Helioseismic constraints on the structure of the solar tachocline. Astrophys. J., 527, 445460.CrossRefGoogle Scholar
Childress, S. 1970. New solutions of the kinematic dynamo problem. J. Math. Phys., 11, 30633076.CrossRefGoogle Scholar
Childress, S. & Gilbert, A. D. 1995. Stretch, Twist, Fold: The Fast Dynamo. Lecture Notes in Physics. Springer.Google Scholar
Childress, S. & Soward, A. M. 1972. Convection-driven hydromagnetic dynamo. Phys. Rev. Lett., 29, 837839.CrossRefGoogle Scholar
Christensen, U. R. 2006. A deep dynamo generating Mercury’s magnetic field. Nature, 444, 10561058.CrossRefGoogle ScholarPubMed
Christensen, U. R. 2010. Dynamo scaling laws and applications to the planets. Space Sci. Rev., 152, 565– 590.CrossRefGoogle Scholar
Christensen, U. R. & Aubert, J. 2006. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int., 166, 97114.CrossRefGoogle Scholar
Christensen, U., Olson, P. & Glatzmaier, G. A. 1998. A dynamo model interpretation of geomagnetic field structures. Geophys. Res. Lett., 25, 15651568.CrossRefGoogle Scholar
Christensen-Dalsgaard, J. 2002. Helioseismology. Rev. Mod. Phys., 74, 10731129.CrossRefGoogle Scholar
Christensen-Dalsgaard, J., Dappen, W., Ajukov, S. V., et al. 1996. The current state of solar modeling. Science, 272, 12861292.CrossRefGoogle ScholarPubMed
Chui, A. Y. K. & Moffatt, H. K. 1994. A thermally driven disc dynamo. In: Proctor, M. R. E., Matthews, P. C. & Rucklidge, A. M. (eds.), Solar and Planetary Dynamos, pp. 51–58. Cambridge University Press.Google Scholar
Chui, A. Y. K. & Moffatt, H. K. 1995. The energy and helicity of knotted magnetic flux tubes. Proc. R. Soc. London, Ser. A, 451, 609629.Google Scholar
Clarke, A., Jr. 1964. Production and dissipation of magnetic energy by differential fluid motion. Phys. Fluids, 7, 12991305.CrossRefGoogle Scholar
Clarke, A., Jr. 1965. Some exact solutions in magnetohydrodynamics with astrophysical applications. Phys. Fluids, 8, 644649.CrossRefGoogle Scholar
Connerney, J. E. P. & Ness, N. F. 1988. Mercury’s magnetic field and interior. In: Mercury, pp. 494–513. University of Arizona Press.Google Scholar
Connerney, J. E. P., Acuna, M. H. & Ness, N. F. 1991. The magnetic field of Neptune. J. Geophys. Res., 96, 1902319042.CrossRefGoogle Scholar
Cook, A. E. & Roberts, P. H. 1970. The Rikitake two-disc dynamo system. Proc. Camb. Phil. Soc., 68, 547569.CrossRefGoogle Scholar
Cook, A. H. 2009. Interiors of the Planets. Cambridge University Press.Google Scholar
Cordero, S. & Busse, F. H. 1992. Experiments on convection in rotating hemispherical shells: Transition to a quasi-periodic state. Geophys. Res. Lett., 19, 733736.CrossRefGoogle Scholar
Corfield, C. N. 1984. The magneto-Boussinesq approximation by scale analysis. Geophys. Astrophys. Fluid Dyn., 29, 1928.CrossRefGoogle Scholar
Courtillot, V. & Olson, P. 2007. Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth Planet. Sci. Lett., 260, 495504.CrossRefGoogle Scholar
Courtillot, V., Ducruix, J. & Le Mouël, J. L. 1978. Inverse methods applied to continuation problems in geophysics. In: Sabatier, P. C. (ed.), Applied Inverse Problems, pp. 48– 82. Lecture Notes in Physics, vol. 85. Springer.Google Scholar
Cowling, T. G. 1934. The magnetic field of sunspots. Not. Not. R. Astron. Soc., 94, 3948.CrossRefGoogle Scholar
Cowling, T. G. 1957. Magnetohydrodynamics. Interscience.Google Scholar
Cowling, T. G. 1975a. Magnetohydrodynamics. Adam Hilger.Google Scholar
Cowling, T. G. 1975b. Sunspots and the solar cycle. Nature, 255, 189190.CrossRefGoogle Scholar
Davidson, P. A. 2013. Scaling laws for planetary dynamos. Geophys. J. Int., 195, 6774.CrossRefGoogle Scholar
Deguchi, T. & Tsurusaki, K. 1997. Random knots and links and applications to polymer physics. Proc. Lect. Knots, 96, 95122.CrossRefGoogle Scholar
Deinzer, W., von Kusserow, H. U. & Stix, M. 1974. Steady and oscillatory αω-dynamos. Astron. Astrophys., 36, 6978.Google Scholar
de Wijs, G. A., Kresse, G., Vocadlo, L., et al. 1998. The viscosity of liquid iron at the physical conditions of the Earth’s core. Nature, 392, 805807.CrossRefGoogle Scholar
Dikpati, M. & Gilman, P. A. 2009. Flux-transport solar dynamos. Space Science Rev., 144, 6775.CrossRefGoogle Scholar
Dolginov, A. Z. & Urpin, V. A. 1979. The inductive generation of the magnetic field in binary systems. Astron. Astrophys., 79, 6069.Google Scholar
Dolginov, Sh., Yeroshenko, Ye. & Zhuzgov, L. 1973. Magnetic field in the very close neighbourhood of Mars according to data from the Mars 2 and Mars 3 spacecraft. J. Geophys. Res., 78, 47794786.CrossRefGoogle Scholar
Dombre, T., Frisch, U., Greene, J. M., et al. 1986. Chaotic streamlines in the ABC flows. J. Fluid Mech., 167, 353391.CrossRefGoogle Scholar
Donati, J.-F. & Brown, S. F. 1997. Zeeman-Doppler imaging of active stars. V. Sensitivity of maximum entropy magnetic maps to field orientation. Astron. Astrophys., 326, 11351142.Google Scholar
Donati, J.-F., Collier Cameron, A., Semel, M., et al. 2003. Dynamo processes and activity cycles of the active stars AB Doradus, LQ Hydrae and HR 1099. Month. Not. R. Soc., 345, 11451186.CrossRefGoogle Scholar
Donati, J.-F., Forveille, T., Collier Cameron, A., et al. 2006a. The large-scale axisymmetric magnetic topology of a very-low-mass fully convective star. Science, 311, 633635.CrossRefGoogle ScholarPubMed
Donati, J.-F., Howarth, I. D., Jardine, M. M., et al. 2006b. The surprising magnetic topology of τ Sco: Fossil remnant or dynamo output? Mon. Not. R. Astron. Soc., 370, 629644.CrossRefGoogle Scholar
Dormy, E. 1997. Modélisation numérique de la dynamo terrestre. PhD thesis, Thèse IPGP, Paris.Google Scholar
Dormy, E. 2016. Strong-field spherical dynamos. J. Fluid Mech., 789, 500513.CrossRefGoogle Scholar
Dormy, E. & Gérard-Varet, D. 2008. Time scales separation for dynamo action. Europhys. Lett., 81, 64002.CrossRefGoogle Scholar
Dormy, E. & Soward, A. M. 2007. Mathematical Aspects of Natural Dynamos. Chapman & Hall.CrossRefGoogle Scholar
Dormy, E., Valet, J.-P. & Courtillot, V. 2000. Numerical models of the geodynamo and observational constraints. Geochem. Geophys. Geosyst., 1, 10371042.CrossRefGoogle Scholar
Dormy, E., Soward, A. M., Jones, C. A., Jault, D. & Cardin, P. 2004. The onset of thermal convection in rotating spherical shells. J. Fluid Mech., 501, 4370.CrossRefGoogle Scholar
Dormy, E., Oruba, L. & Petitdemange, L. 2018. Three branches of dynamo action. Fluid Dyn. Res., 50, 011415.CrossRefGoogle Scholar
Drobyshevski, E. M. & Yuferev, V. S. 1974. Topological pumping of magnetic flux by three-dimensional convection. J. Fluid Mech., 65, 3344.CrossRefGoogle Scholar
Dudley, M. L. & James, R. W. 1989. Time-dependent kinematic dynamos with stationary flows. Proc. R. Soc. London, Ser. A, 425, 407429.Google Scholar
Dungey, J. W. 1961. Interplanetary magnetic field and the Auroral zones. Phys. Rev. Lett., 6, 4748.CrossRefGoogle Scholar
Durney, B. R. 1976. On theories of solar rotation. In: Basic Mechanisms of Solar Activity, pp. 243–295. Intern. Astron. Union, vol. 71. Springer.Google Scholar
Dziewonski, A. M. & Anderson, D. L. 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297356.CrossRefGoogle Scholar
Elsasser, W. M. 1946. Induction effects in terrestrial magnetism, I. Theory. Phys. Rev., 69, 106116.CrossRefGoogle Scholar
Eltayeb, I. A. 1972. Hydromagnetic convection in a rapidly rotating fluid layer. Proc. R. Soc. London, Ser. A, 326, 229254.Google Scholar
Eltayeb, I. A. 1975 .Overstable hydromagnetic convection in a rotating fluid layer. J. Fluid Mech., 71, 161179.CrossRefGoogle Scholar
Escande, D. F. 2015. What is a reversed field pinch? In: Diamond, P. H., Garbet, X., Ghendrih, P. & Sarazin, Y. (eds.), Rotation and Momentum Transport in Magnetized Plasmas, pp. 247–286. World Scientific.Google Scholar
Falkovich, G., Gawȩdzki, K. & Vergassola, M. 2001. Particles and fields in fluid turbulence. Rev. Mod. Phys., 73, 913975.CrossRefGoogle Scholar
Faraday, M. 1832. Experimental researches in electricity. Phil. Trans. R. Soc. London, 122, 125194.Google Scholar
Fautrelle, Y. & Childress, S. 1982. Convective dynamos with intermediate and strong fields. Geophys. Astrophys. Fluid Dyn., 22, 255279.CrossRefGoogle Scholar
Favier, B. & Proctor, M. R. E. 2013. Growth rate degeneracies in kinematic dynamos. Phys. Rev. E., 88, 031001.CrossRefGoogle ScholarPubMed
Fearn, D. R. 1979. Thermal and magnetic instabilities in a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn., 14, 103126.CrossRefGoogle Scholar
Fearn, D. R. 1994 .Nonlinear planetary dynamos. In: Lectures on Solar and Planetary Dynamos, pp. 219–244. Cambridge University Press.Google Scholar
Fearn, D. R. 1998 .Hydromagnetic flow in planetary cores. Rep. Prog. Phys., 61, 175235.CrossRefGoogle Scholar
Fearn, D. R. & Proctor, M. R. E. 1987. Dynamically consistent magnetic fields produced by differential rotation. J. Fluid Mech., 178, 521534.CrossRefGoogle Scholar
Fearn, D. R., Roberts, P. H. & Soward, A. M. 1988. Convection, stability and the dynamo. In: Galdi, G. P. & Straughan, B. (eds.), Energy, Stability and Convection, pp. 60–324. Longman.Google Scholar
Featherstone, N. A. & Miesch, M. S. 2015. Meridional circulation in solar and stellar convection zones. Astrophys. J., 804, 67.CrossRefGoogle Scholar
Fefferman, C. L. 2006. The Millennium Prize Problems. American Mathematical Society.Google Scholar
Fernando, H. J. S., Chen, R-R. & Boyer, D. L. 1991. Effects of rotation on convective turbulence. J. Fluid Mech., 228, 513547.Google Scholar
Ferraro, V. C. A. 1937. The non-uniform rotation of the Sun and its magnetic field. Mon. Not. R. Astron. Soc., 97, 458472.CrossRefGoogle Scholar
Ferrière, K. 1992a. Effect of an ensemble of explosions on the galactic dynamo. I – General formulation. Astrophys. J., 389, 286296.Google Scholar
Ferrière, K. 1992b. Effect of the explosion of supernovae and superbubbles on the galactic dynamo. Astrophys. J., 391, 188198.CrossRefGoogle Scholar
Ferrière, K. 1998. Alpha-tensor and diffusivity tensor due to supernovae and superbubbles in the galactic disk. Astron. Astrophys., 335, 488499.Google Scholar
Ferrière, K. 2010. The interstellar magnetic field near the galactic center. Astron. Nachr., 331, 2733.CrossRefGoogle Scholar
Feudel, F., Tuckerman, L. S., Zaks, M. & Hollerbach, R. 2017. Hysteresis of dynamos in rotating spherical shell convection. Phys. Rev. Fluids, 2, 053902.CrossRefGoogle Scholar
Finn, J. M. & Ott, E. 1988. Chaotic flows and fast magnetic dynamos. Phys. Fluids, 31, 29923011.CrossRefGoogle Scholar
Fletcher, A., Beck, R., Shukurov, A., Berkhuijsen, E. M. & Horellou, C. 2011. Magnetic fields and spiral arms in the galaxy M51. Month. Not. R. Soc., 412, 23962416.CrossRefGoogle Scholar
Freedman, M. H. 1988. A note on topology and magnetic energy in incompressible and perfectly conducting fluids. J. Fluid. Mech., 194, 549551.CrossRefGoogle Scholar
Friedlander, S. & Vicol, V. 2011. Global well-posedness for an advection-diffusion equation arising in magneto-geostrophic dynamics. Ann. Inst. H. Poincaré, 28, 283301.CrossRefGoogle Scholar
Frisch, U. 1991. From global scaling, à la Kolmogorov, to local multifractal scaling in fully developed turbulence. Proc. R. Soc. London, Ser. A, 434, 8999.Google Scholar
Frisch, U. & Villone, B. 2014. Cauchy’s almost forgotten Lagrangian formulation of the Euler equation for 3D incompressible flow. Eur. Phys. J. H., 39, 325351.CrossRefGoogle Scholar
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech., 68, 769778.CrossRefGoogle Scholar
Fuchs, H., Rädler, K. H. & Reinhardt, M. 2001. Suicidal and parthenogenetic dynamos. In: Armbuster, D. & Oprea, L (eds.), Dynamo and Dynamics, a Mathematical Challenge, pp. 338–346. Kluwer.Google Scholar
Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963. Finite-resistive instabilities of a sheet pinch. Phys. Fluids, 6, 459.CrossRefGoogle Scholar
Gailitis, A. 1970. Self-excitation of a magnetic field by a pair of annular vortices. Magnetohydrodynamics, 6, 1417.Google Scholar
Gailitis, A. 1990. The helical MHD dynamo. In: Moffatt, H. K. & Tsinober, A. (eds.), Topological Fluid Mechanics, pp. 147–156. Cambridge University Press.Google Scholar
Gailitis, A. & Freiberg, Ya. 1976. Theory of a helical MHD dynamo. Magnetohydrodynamics, 12, 127130.Google Scholar
Gailitis, A., Lielausis, O., Dement’ev, S., et al. 2000. Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett., 84, 4365.CrossRefGoogle ScholarPubMed
Gailitis, A., Lielausis, O., Platacis, E., et al. 2001. Magnetic field saturation in the Riga dynamo experiment. Phys. Rev. Lett., 86, 3024.CrossRefGoogle ScholarPubMed
Galileo, Galilei. 1613. Istoria e dimostrazioni intorno alle macchie solari e loro accidenti. Giacomo Mascardi.Google Scholar
Gallagher, I. & Gérard-Varet, D. 2017. Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics. INdAM Series, vol. 17. Springer.Google Scholar
Gallet, Y., Pavlov, V., Halverson, G. & Hulot, G. 2012. Toward constraining the long-term reversing behavior of the geodynamo: A new Maya superchron ∼ 1 billion years ago from the magnetostratigraphy of the Kartochka Formation (southwestern Siberia). Earth Planet. Sci. Lett., 339, 117126.CrossRefGoogle Scholar
Galloway, D. J. 2012. ABC flows then and now. Geophys. Astrophys. Fluid Dyn., 106, 450467.CrossRefGoogle Scholar
Galloway, D. J. & O’Brian, N. R. 1993. Numerical calculations of dynamos for ABC and related flows. In: Proctor, M. R. E., Matthews, P. C. & Rucklidge, A. M. (eds.), Solar and Planetary Dynamos, pp. 105–113. Cambridge University Press.Google Scholar
Galloway, D. J. & Proctor, M. R. E. 1983. The kinematics of hexagonal magnetoconvection. Geophys. Astrophys. Fluid Dyn., 24, 109136.CrossRefGoogle Scholar
Galloway, D. J. & Proctor, M. R. E. 1992. Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion. Nature, 356, 691693.CrossRefGoogle Scholar
Gauss, C. F. 1832. Intensitas vis magneticae terrestris ad mensuram absolutam revocata. Werke, V, 79118.Google Scholar
Gauss, C. F. 1838. Allgemeine Theorie des Erdemagnetismus. Werke, V, 119193.Google Scholar
Gellibrand, H. 1635. A Discourse Mathematical on the Variation of the Magneticall Needle: Together with Its Admirable Diminution Lately Discovered. Printed by William Iones, London.Google Scholar
Ghizaru, M., Charbonneau, P. & Smolarkiewicz, P. K. 2010. Magnetic cycles in global large-eddy simulations of solar convection. Astrophys. J. Lett., 715, L133–L137.CrossRefGoogle Scholar
Gibson, R. D. 1968a. The Herzenberg dynamo, I. Q. J. Mech. Appl. Math., 21, 243255.CrossRefGoogle Scholar
Gibson, R. D. 1968b. The Herzenberg dynamo, II. Q. J. Mech. Appl. Math., 21, 257287.CrossRefGoogle Scholar
Gibson, R. D. & Roberts, P. H. 1967 . Some comments on the theory of homogeneous dynamo. In: Hindmarsh, W. R., Lowes, F. J., Roberts, P. R. & Runcorn, S. K. (eds.), Magnetism and the Cosmos, pp. 108–120.Google Scholar
Oliver, Boyd 1969. The Bullard-Gellman dynamo. In: Runcorn, S. K. (ed.), The Application of Modern Physics to the Earth and Planetary Interiors, pp. 577601. Wiley, Interscience.Google Scholar
Gilbert, A. D. 1988. Fast dynamo action in the Ponomarenko dynamo. Geophys. Astrophys. Fluid Dyn., 44, 241258.CrossRefGoogle Scholar
Gilbert, A. D. 2002. Magnetic helicity in fast dynamos. Geophys. Astrophys. Fluid Dyn., 96, 135151.CrossRefGoogle Scholar
Gilbert, A. D. 2003. Dynamo theory. In: Friedlander, S. & Serre, D. (eds.), Handbook of Mathematical Fluid Dynamics, vol. 2, pp 355–441. Elsevier.Google Scholar
Gilbert, A. D., Mason, J. & Tobias, S. M. 2016. Flux expulsion with dynamics. J. Fluid Mech., 791, 568588.CrossRefGoogle Scholar
Gilbert, W. 1600. De magnete magnetisque corporibus, et de magno magnete tellure. Peter Short, London. (Translation by P. F. Mottelay 1893, republished by Dover, 1958.)Google Scholar
Gillet, N., Jault, D., Canet, E. & Fournier, A. 2010. Fast torsional waves and strong magnetic field within the Earth’s core. Nature, 465, 7477.CrossRefGoogle ScholarPubMed
Gillet, N., Jault, D. & Canet, E. 2017. Excitation of travelling torsional normal modes in an Earth’s core model. Geophys. J. Int., 210, 15031516.CrossRefGoogle Scholar
Gilman, P. A. 1970. Instability of magnetohydrostatic stellar interiors from magnetic buoyancy, I. Astrophys. J., 162, 10191029.CrossRefGoogle Scholar
Gissinger, C., Fromang, S. & Dormy, E. 2009. Direct numerical simulations of the galactic dynamo in the kinematic growing phase. Mon. Not. R. Astron. Soc., 394, L84–L88.CrossRefGoogle Scholar
Gissinger, C., Dormy, E. & Fauve, S. 2010. Morphology of field reversals in turbulent dynamos. Europhys. Lett., 90, 49001.CrossRefGoogle Scholar
Glane, S. & Buffett, B. A. 2018. Enhanced core-mantle coupling due to stratification at the top of the core. Frontiers in Earth Science, 6, 171180.CrossRefGoogle Scholar
Glatzmaier, G. A. & Gilman, P. A. 1982. Compressible convection in a rotating spherical shell. V - Induced differential rotation and meridional circulation. Astrophys. J., 256, 316330.CrossRefGoogle Scholar
Glatzmaier, G. A. & Roberts, P. H. 1995. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Inter., 91, 6375.CrossRefGoogle Scholar
Glatzmaier, G. A. & Roberts, P. H. 1996. An anelastic evolutionary geodynamo simulation driven by compositional and thermal convection. Phys. D, 97, 8194.CrossRefGoogle Scholar
Glatzmaier, G. A., Coe, R. S., Hongre, L. & Roberts, P. H. 1999. The role of the Earth’s mantle in controlling the frequency of geomagnetic reversals. Nature, 401, 885890.CrossRefGoogle Scholar
Goldreich, P. & Lynden-Bell, D. 1965. II. Spiral arms as sheared gravitational instabilities. Mon. Not. R. Astron. Soc., 130, 125158.CrossRefGoogle Scholar
Golitsyn, G. S. 1960. Fluctuations of the magnetic field and current density in a turbulent flow of a weakly conducting fluid. Sov. Phys. Dokl., 5, 536539.Google Scholar
Goto, S., Fujiwara, M. & Yamato, M. 2011. Turbulence sustained in a precessing sphere and spheroids. In: TSFP Digital Library Online. Begell House.Google Scholar
Goudard, L. & Dormy, E. 2008. Relations between the dynamo region geometry and the magnetic behavior of stars and planets. Europhys. Lett., 83, 59001.CrossRefGoogle Scholar
Gough, D. O. & Weiss, N. O. 1976. The calibration of stellar convection theories. Mon. Not. R. Astron. Soc., 176, 589607.CrossRefGoogle Scholar
Gourgouliatos, K. N. & Cumming, A. 2014. Hall effect in neutron star crusts: evolution, endpoint and dependence on initial conditions. Mon. Not. R. Astron. Soc., 438, 1618– 1629.CrossRefGoogle Scholar
Govoni, F. & Feretti, L. 2004. Magnetic fields in clusters of galaxies. Int. J. Mod. Phys. D, 13, 15491594.CrossRefGoogle Scholar
Govoni, F., Murgia, M., Feretti, L., et al. 2005. A2255: The first detection of filamentary polarized emission in a radio halo. Astron. Astrophys., 430, L5–L8.CrossRefGoogle Scholar
Greenspan, H. 1968. The Theory of Rotating Fluids. Cambridge University Press. 1974. On α-dynamos. Stud. Appl. Math., 13, 3543.Google Scholar
Gubbins, D. 1973. Numerical solutions of the kinematic dynamo problem. Phil. Trans. R. Soc. London, Ser. A, 274, 493521.Google Scholar
Gubbins, D. 2001. The Rayleigh number for convection in the Earth’s core. Phys. Earth Planet. Inter., 128, 312.CrossRefGoogle Scholar
Guervilly, C. & Cardin, P. 2016. Subcritical convection of liquid iron metals in a rotating sphere using a quasi-geostrophic model. J. Fluid Mech., 808, 6189.CrossRefGoogle Scholar
Guyodo, Y. & Valet, J.-P. 1999. Global changes in intensity of the Earth’s magnetic field during the past 800kyr. Nature, 399, 249252.CrossRefGoogle Scholar
Hadamard, J. 1902. Sur les problèmes aux dérivées partielles et leur signification physique. Bull. Univ. Princeton, 13, 4952.Google Scholar
Haines, M. G. 2011. A review of the dense Z-pinch. Plasma Phys. Controlled Fusion, 53, 093001.CrossRefGoogle Scholar
Hale, G. E. 1908. On the probable existence of a magnetic field in sunspots. Astrophys. J., 28, 315343.CrossRefGoogle Scholar
Hale, G. E., Ellerman, F., Nicholson, S. B. & Joy, A. H. 1919. The magnetic polarity of sun-spots. Astrophys. J., 49, 153.CrossRefGoogle Scholar
Halley, E. 1692. An account of the causes of the change of the variation of the magnetical needle; with an hypothesis of the structure of the internal parts of the Earth. Phil. Trans. R. Soc. London, 195, 208221.Google Scholar
Hathaway, D. H. 2015. The solar cycle. Living Rev. Sol. Phys., 12, 4.CrossRefGoogle ScholarPubMed
Hawley, J. F. & Balbus, S. A. 1991. A powerful local shear instability in weakly magnetized systems. II. Nonlinear evolution. Astrophys. J., 376, 223233.CrossRefGoogle Scholar
Hénon, M. 1966. Sur la topologie des lignes de courant dans un cas particulier. C. R. hebd. Séanc. Acad. Sci., A, 262, 312.Google Scholar
Herzenberg, A. 1958. Geomagnetic dynamos. Phil. Trans. R. Soc. London, Ser. A, 250, 543585.Google Scholar
Herzenberg, A. & Lowes, F. J. 1957. Electromagnetic induction in rotating conductors. Phil. Trans. R. Soc. London, Ser. A, 249, 507584.Google Scholar
Heyvaerts, J., Priest, E. R. & Rust, D. M. 1977. An emerging flux model for the solar flare phenomenon. Astrophys. J., 216, 123137.CrossRefGoogle Scholar
Hide, R. 1970. On the Earth’s core−mantle interface. Q. J. R. Met. Soc., 96, 579590.CrossRefGoogle Scholar
Hide, R. 1974. Jupiter and Saturn. Proc. R. Soc. London, Ser. A, 336, 6384.Google Scholar
Hide, R. 1976. A note on helicity. Geophys. Fluid Dyn., 7, 157161.CrossRefGoogle Scholar
Hide, R. 2002. Helicity, superhelicity and weighted relative potential vorticity: useful diagnostic pseudoscalars? Q. J. R. Met. Soc., 128, 17591762.CrossRefGoogle Scholar
Hide, R. & Malin, S. R. C. 1970. Novel correlations between global features of the Earth’s gravitational and magnetic fields. Nature, 225, 605609.CrossRefGoogle ScholarPubMed
Higgins, G. H. & Kennedy, G. C. 1971. The adiabatic gradient and the melting point gradient in the core of the Earth. J. Geophys. Res., 76, 18701878.CrossRefGoogle Scholar
Hiltner, W. A. 1949. Polarization of light from distant stars by interstellar medium. Science, 109, 165.CrossRefGoogle ScholarPubMed
Hollerbach, R. 2000. A spectral solution of the magneto-convection equations in spherical geometry. Int. J. Numer. Meth. Fluids, 32, 773797.3.0.CO;2-P>CrossRefGoogle Scholar
Hollerbach, R., Galloway, D. J. & Proctor, M. R. E. 1995. Numerical evidence of fast dynamo action in a spherical shell. Phys. Rev. Lett., 74, 31453148.CrossRefGoogle Scholar
Holme, R. 2009. Large-scale flow in the core. In: Olson, P. & Schubert, G. (eds.), Core Dynamics, pp. 107–130. Treatise on Geophysics, vol. 8. Elsevier.Google Scholar
Holme, R. & Whaler, K. A. 2001. Steady core flow in an azimuthally drifting reference frame. Geophys. J. Int., 145, 560569.CrossRefGoogle Scholar
Howard, R. & Harvey, J. 1970. Spectroscopic determinations of solar rotation. Sol. Phys., 12, 2325.CrossRefGoogle Scholar
Howard, R. & Labonte, B. J. 1980. The sun is observed to be a torsional oscillator with a period of 11 years. Astrophys. J. Lett., 239, L33–L36.CrossRefGoogle Scholar
Howe, R. 2009. Solar interior rotation and its variation. Living Rev. Sol. Phys., 6, 1.CrossRefGoogle Scholar
Howe, R., Hill, F., Komm, R., et al. 2011. The torsional oscillation and the new solar cycle. Paper 012074 in: J. Phys. Conf. Series, vol. 271.CrossRefGoogle Scholar
Howe, R., Christensen-Dalsgaard, J., Hill, F., et al. 2013. The high-latitude branch of the solar torsional oscillation in the rising phase of cycle 24. Astrophys. J. Lett., 767, L20.CrossRefGoogle Scholar
Hoyng, P., Schmitt, D. & Ossendrijver, M. A. J. H. 2002. A theoretical analysis of the observed variability of the geomagnetic dipole field. Phys. Earth Planet. Inter., 130, 143157.CrossRefGoogle Scholar
Hoyt, D. V. & Schatten, K. H. 1998. Group sunspot numbers: A new solar activity reconstruction. Sol. Phys., 181, 491512.CrossRefGoogle Scholar
Hughes, D. W., Rosner, R. & Weiss, N. O. (eds.). 2007. The Solar Tachocline. Cambridge University Press.CrossRefGoogle Scholar
Ibbetson, A. & Tritton, D. J. 1975. Experiments on turbulence in a rotating fluid. J. Fluid Mech., 68, 639672.CrossRefGoogle Scholar
Ibrahim, A. I., Swank, J. H. & Parke, W. 2003. New evidence of proton cyclotron-resonance in a magnetic strength field SGR 1806-20. Astrophys. J. Lett., 584, L17– L21.Google Scholar
Iroshnikov, P. S. 1964. Turbulence of a conducting fluid in a strong magnetic field. Soviet Astron., 7, 742750.Google Scholar
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007. Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech., 592, 335366.CrossRefGoogle Scholar
Jackson, A., Jonkers, A. R. T. & Walker, M. R. 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A, 358, 957990.CrossRefGoogle Scholar
Jacobs, J. A. 1975. The Earth’s Core. Academic.Google Scholar
Jacobs, J. A. 1976. Reversals of the Earth’s magnetic field. Phys. Rep., 26, 183225.CrossRefGoogle Scholar
Jacobs, J. A. 1994. Reversals of the Earth’s Magnetic Field. 2nd ed. Cambridge University Press.CrossRefGoogle Scholar
Jacquin, L., Leuchter, O., Cambon, C. & Mathieu, J. 1990. Homogeneous turbulence in the presence of rotation. J. Fluid Mech., 220, 152.CrossRefGoogle Scholar
Jault, D. 1995. Model Z by computation and Taylor’s condition. Geophys. Astrophys. Fluid Dyn., 79, 99124.CrossRefGoogle Scholar
Jault, D. 2003. Electromagnetic and topographic coupling, and LOD variations. In: Zhang, K., Soward, A. M. & Jones, C. A. (eds.), Earth’s Core and Lower Mantle, pp. 56–76. Fluid Mech. of Astrophys. and Geophys. Taylor and FrancisGoogle Scholar
Jault, D. & Le Mouël, J. L. 1989. The topographic torque associated with a tangentially geostrophic motion at the core surface and inferences on the flow inside the core. Geophys. Astrophys. Fluid Dyn., 48, 273295.CrossRefGoogle Scholar
Jault, D., Gire, C. & Le Mouël, J. L. 1988. Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature, 333, 353356.CrossRefGoogle Scholar
Jeffreys, H. 1926. The viscosity of the Earth (fourth paper). Mon. Not. R. Astron. Soc. Geophys. Suppl., 1, 412424.CrossRefGoogle Scholar
Jepps, S. A. 1975. Numerical models of hydromagnetic dynamos. J. Fluid Mech., 67, 625– 646.CrossRefGoogle Scholar
Ji, H., Goodman, J. & Kageyama, A. 2001. Magnetorotational instability in a rotating liquid metal annulus. Mon. Not. R. Astron. Soc., 325, L1–L5.CrossRefGoogle Scholar
Johnson, C. L., Phillips, R. J., Purucker, M. E., et al. 2015. Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field. Science, 348, 892895.CrossRefGoogle ScholarPubMed
Jones, C. A. 2011. Planetary magnetic fields and fluid dynamos. Ann. Rev. Fluid Mech., 43, 583614.CrossRefGoogle Scholar
Jones, C. A., Soward, A. M. & Mussa, A. I. 2000. The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech., 405, 157179.CrossRefGoogle Scholar
Jones, C. A., Mussa, A. I. & Worland, S. J. 2003. Magnetoconvection in a rapidly rotating sphere: the weak–field case. Proc. R. Soc. London, Ser. A, 459, 773797.CrossRefGoogle Scholar
Jones, S. E. & Gilbert, A. D. 2014. Dynamo action in the ABC flows using symmetries. Geophys. Astrophys. Fluid Dyn., 108, 83116.CrossRefGoogle Scholar
Julien, K., Rubio, A. M., Grooms, I. & Knobloch, E. 2012. Statistical and physical balances in low Rossby number Rayleigh–Bénard convection. Geophys. Astrophys. Fluid Dyn., 106, 392428.CrossRefGoogle Scholar
Kadanoff, L. P. 2000. Statistical Physics: Statics, Dynamics and Renormalization. World Scientific.CrossRefGoogle Scholar
Kaplan, E. J., Schaeffer, N., Vidal, J. & Cardin, P. 2017. Subcritical thermal convection of liquid metals in a rapidly rotating sphere. Phys. Rev. Lett., 119, 094501.CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J. & Brandenburg, A. 2013. Effects of enhanced stratification on equatorward dynamo wave propagation. Astrophys. J., 778, 41.CrossRefGoogle Scholar
Karman, Th. v. 1921. Über laminare und turbulente Reibung. Z. Angew. Math. Meck., 1, 244.Google Scholar
Khurana, K. K., Kivelson, M. G., Stevenson, D. J., et al. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 777780.CrossRefGoogle ScholarPubMed
Kida, S. 2011. Steady flow in a rapidly rotating sphere with weak precession. J. Fluid Mech., 680, 150193.CrossRefGoogle Scholar
Kida, S. 2018. Steady flow in a rotating sphere with strong precession. Fluid Dyn. Res., 50, 021401.CrossRefGoogle Scholar
Kimura, Y. & Moffatt, H. K. 2014. Reconnection of skewed vortices. J. Fluid Mech., 751, 329345.CrossRefGoogle Scholar
King, E. M. & Buffett, B. A. 2013. Flow speeds and length scales in geodynamo models: the role of viscosity. Earth Planet. Sci. Lett., 371, 156162.CrossRefGoogle Scholar
Kivelson, M. G., Khurana, K. K., Russell, C. T., et al. 1996. Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384, 537541.CrossRefGoogle Scholar
Kivelson, M. G., Khurana, K. K., Russell, C. T. & Walker, R. J. 2001. Magnetic signature of a polar pass over Io. AGU Fall Meeting Abstracts.Google Scholar
Klapper, I. & Young, L. S. 1995. Rigorous bounds on the fast dynamo growth rate involving topological entropy. Commun. Math. Phys., 173, 623.CrossRefGoogle Scholar
Knobloch, E. & Landsberg, A. S. 1996. A new model of the solar cycle. Mon. Not. R. Astron. Soc., 278, 294302.CrossRefGoogle Scholar
Knobloch, E., Tobias, S. M. & Weiss, N. O. 1998. Modulation and symmetry changes in stellar dynamos. Mon. Not. R. Astron. Soc., 297, 11231138.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941a. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. AN SSSR, 30, 299303.Google Scholar
Kolmogorov, A. N. 1941b. Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk. SSR, 32, 1618.Google Scholar
Kolmogorov, A. N. 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech., 13, 8285.CrossRefGoogle Scholar
Kovasznay, L. S. G. 1960. Plasma turbulence. Rev. Mod. Phys., 32, 815822.CrossRefGoogle Scholar
Kraichnan, R. H. 1965. Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids, 8, 13851387.CrossRefGoogle Scholar
Kraichnan, R. H. 1973. Helical turbulence and absolute equilibrium. J. Fluid Mech., 59, 745752.CrossRefGoogle Scholar
Kraichnan, R. H. 1976a. Diffusion of passive-scalar and magnetic fields by helical turbulence. J. Fluid Mech., 77, 753768.CrossRefGoogle Scholar
Kraichnan, R. H. 1976b. Diffusion of weak magnetic fields by isotropic turbulence. J. Fluid Mech., 75, 657676.CrossRefGoogle Scholar
Kraichnan, R. H. & Nagarajan, S. 1967. Growth of turbulent magnetic fields. Phys. Fluids, 10, 859870.CrossRefGoogle Scholar
Krause, F. & Rädler, K-H. 1980. Mean-Field Magnetohydrodynamics and Dynamo Theory. Pergamon. [Republished by Elsevier 2016.]Google Scholar
Krause, F. & Steenbeck, M. 1967. Some simple models of magnetic field regeneration by non-mirror-symmetric turbulence. Z. Naturforsch., 22a, 671675. See Roberts & Stix (1971), pp. 81–95.CrossRefGoogle Scholar
Krause, M., Hummel, E. & Beck, R. 1989. The magnetic field structures in two nearby spiral galaxies. I – The axisymmetric spiral magnetic field in IC342. II – The bisymmetric spiral magnetic field in M81. Astron. Astrophys., 217, 430.Google Scholar
Krstulovic, G., Thorner, G., Vest, J.-P., et al. 2011. Axial dipolar dynamo action in the Taylor–Green vortex. Phys. Rev. E, 84, 066318.CrossRefGoogle ScholarPubMed
Kumar, S. & Roberts, P. H. 1975. A three-dimensional kinematic dynamo. Proc. R. Soc. London, Ser. A, 344, 235258.Google Scholar
Kutzner, C. & Christensen, U. R. 2002. From stable dipolar towards reversing numerical dynamos. Phys. Earth Planet. Inter., 131, 2945.CrossRefGoogle Scholar
Landahl, M. T. 1980. A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech., 98(2), 243251.CrossRefGoogle Scholar
Landstreet, J. D. & Angel, J. R. P. 1974. The polarisation spectrum and magnetic field strength of the white dwarf Grw+ 70◦ 8247. Astrophys. J., 196, 819825.CrossRefGoogle Scholar
Larmor, J. 1919. How could a rotating body such as the Sun become a magnet? In: Rep. Brit. Assoc. Adv. Sci. 1919, pp. 159–160. BAAS.Google Scholar
Lehmann, I. 1936. P’. Publ. Bur. Centr. Séism. Internat., A14, 331.Google Scholar
Lehnert, B. 1954. Magnetohydrodynamic waves under the action of the Coriolis force. Astrophys. J., 119, 647654.CrossRefGoogle Scholar
Leighton, R. B. 1969. A magneto-kinematic model of the solar cycle. Astrophys. J., 156, 1.CrossRefGoogle Scholar
Léorat, J. 1975. La turbulence magnétohydrodynamique hélicitaire et la géneration des champs magnétohydrodynamiques a grande échelle. PhD thesis, Univ. de Paris VII.Google Scholar
Levy, E. H. 1972. Effectiveness of cyclonic convection for producing the geomagnetic field. Astrophys. J., 171, 621633.CrossRefGoogle Scholar
Li, K., Jackson, A. & Livermore, P. W. 2018. Taylor state dynamos found by optimal control: axisymmetric examples. J. Fluid Mech., 853, 647697.CrossRefGoogle Scholar
Li, K., Jackason, A. & Livermore, P. W. 2018 Taylor state dynamos foundly optimal contol: antisymmetric examples. J. Fleid Mech. 853, 647697.CrossRefGoogle Scholar
Liepmann, H. 1952. Aspects of the turbulence problem. Z. Ang. Math. Phys., 3, 321342.CrossRefGoogle Scholar
Lighthill, M. J. 1959. Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press.Google Scholar
Lilley, F. E. M. 1970. On kinematic dynamos. Proc. R. Soc. London, Ser. A, 316, 153167.Google Scholar
Lin, Y., Marti, P. & Noir, J. 2015. Shear-driven parametric instability in a precessing sphere. Phys. Fluids, 27, 046601.CrossRefGoogle Scholar
Lin, Y., Marti, P., Noir, J. & Jackson, A. 2016. Precession-driven dynamos in a full sphere and the role of large scale cyclonic vortices. Phys. Fluids, 28, 066601.CrossRefGoogle Scholar
Linardatos, D. 1993. Determination of two-dimensional magnetostatic equilibria and analogous Euler flows. J. Fluid Mech., 246, 569591.CrossRefGoogle Scholar
Lister, J. R. & Buffett, B. A. 1998. Stratification of the outer core at the core−mantle boundary. Phys. Earth Planet. Inter., 105, 519.CrossRefGoogle Scholar
Loper, D. E. 1975. Torque balance and energy budget for the precessionally driven dynamo. Phys. Earth Planet. Inter., 11, 4360.CrossRefGoogle Scholar
Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.2.0.CO;2>CrossRefGoogle Scholar
Lorenzani, S. & Tilgner, A. 2001. Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech., 447, 111128.CrossRefGoogle Scholar
Lortz, D. 1968a. Exact solutions of the hydromagnetic dynamo problem. Plasma Phys., 10, 967.CrossRefGoogle Scholar
Lortz, D. 1968b. Impossibility of steady dynamos with certain symmetries. Phys. Fluids, 11, 913– 915.CrossRefGoogle Scholar
Lowes, F. J. 1974. Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys. J. R. Astron. Soc., 36, 717718.CrossRefGoogle Scholar
Lowes, F. J. 2011. Why the first laboratory self-exciting dynamo was at Newcastle. Geophys. Astrophys. Fluid Dyn., 105, 213233.CrossRefGoogle Scholar
Lowes, F. J. & Wilkinson, I. 1963. Geomagnetic dynamo: A laboratory model. Nature, 198, 11581160.CrossRefGoogle Scholar
Lowes, F. J. & Wilkinson, I. 1968. Geomagnetic dynamo: An improved laboratory model. Nature, 219, 717718.CrossRefGoogle Scholar
Lynden-Bell, D. & Boily, C. 1994. Self-similar solutions up to flashpoint in highly wound magnetostatis. Mon. Not. R. Astron. Soc., 341, 146152.CrossRefGoogle Scholar
Lynden-Bell, D. & Moffatt, H. K. 2015. Flashpoint. Mon. Not. R. Astron. Soc., 452, 902– 909.CrossRefGoogle Scholar
MacGregor, K. B. & Charbonneau, P. 1997. Solar interface dynamos I. Linear kinematic models in Cartesian geometry. Astrophys. J., 486, 484501.CrossRefGoogle Scholar
Malkus, W. V. R. 1963. Precessional torques as the cause of geomagnetism. J. Geophys. Res., 68, 28712886.CrossRefGoogle Scholar
Malkus, W. V. R. 1964. Boussinesq equations and convection energetics. In: Geophys. Fluid Dyn. Proc. Woods Hole Oceanographic Institution.Google Scholar
Malkus, W. V. R. 1968. Precession of the Earth as the cause of geomagnetism,. Science, 160, 259264.CrossRefGoogle ScholarPubMed
Malkus, W. V. R. & Proctor, M. R. E. 1975. The macrodynamics of α-effect dynamos in rotating fluids. J. Fluid Mech., 67, 417444.Google Scholar
Malkus, W. V. R. & Veronis, G. 1958. Finite amplitude convection. J. Fluid Mech., 4, 225260.CrossRefGoogle Scholar
Mandea, M. & Dormy, E. 2003. Asymmetric behavior of magnetic dip poles. Earth Planets Space, 55, 153157.CrossRefGoogle Scholar
Mao, S. A., Carilli, C., Gaensler, B. M., et al. 2017. Detection of microgauss coherent magnetic fields in a galaxy five billion years ago. Nature Astron., 1, 621626.CrossRefGoogle Scholar
Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. & Holin, I. V. 2007. Large longitude libration of Mercury reveals a molten core. Science, 316, 710714.CrossRefGoogle ScholarPubMed
Mason, J., Hughes, D. W. & Tobias, S. M. 2002. The competition in the solar dynamo between surface and deep-seated α-effects. Astrophys. J. Lett., 580, L89–L92.CrossRefGoogle Scholar
Maunder, E. W. 1904. Note on the distribution of sunspots in heliographic latitude, 1874– 1902. Mon. Not. R. Astron. Soc., 64, 747761.CrossRefGoogle Scholar
Maunder, E. W. 1913. Distribution of sunspots in heliographic latitude, 1874–1913. Mon. Not. R. Astron. Soc., 74, 112116.CrossRefGoogle Scholar
Maxwell, J. C. 1867, . On the dynamical theory of gases. Phil. Trans. R. Soc. London, 157, 49–88.Google Scholar
Maxwell, J. C. 1867, . 1873. A Treatise on Electricity and Magnetism. Oxford University Press.Google Scholar
McCray, R. & Snow, T. P., Jr. 1979. The violent interstellar medium. Ann. Rev. Astron. Astrophys., 17, 213240.CrossRefGoogle Scholar
Mestel, L. 1967. Stellar magnetism. In: Sturrock, P. (ed.), Plasma Astrophysics, pp. 185– 228. Academic.Google Scholar
Miesch, M. S. 2012. The solar dynamo. Phil. Trans. R. Soc. London, Ser. A, 370, 3049– 3069.Google ScholarPubMed
Miesch, M. S. & Toomre, J. 2009. Turbulence, magnetism, and shear in stellar interiors. Annu. Rev. Fluid Mech., 41, 317345.CrossRefGoogle Scholar
Mizerski, K. A. & Moffatt, H. K. 2018. Dynamo generation of a magnetic field by decaying Lehnert waves in a highly conducting plasma. Geophys. Astrophys. Fluid Dyn., 112, 165174.CrossRefGoogle Scholar
Moffatt, H. K. 1963. Magnetic eddies in an incompressible viscous fluid of high electrical conductivity. J. Fluid Mech., 17, 225239.CrossRefGoogle Scholar
Moffatt, H. K. 1969. The degree of knottedness of tangled vortex lines. J. Fluid Mech., 35, 117129.CrossRefGoogle Scholar
Moffatt, H. K. 1970. Turbulent dynamo action at low magnetic Reynolds number. J. Fluid Mech., 41, 435452.CrossRefGoogle Scholar
Moffatt, H. K. 1972. An approach to a dynamic theory of dynamo action in a rotating conducting fluid. J. Fluid Mech., 53, 385399.CrossRefGoogle Scholar
Moffatt, H. K. 1974. The mean electromotive force generated by turbulence in the limit of perfect conductivity. J. Fluid Mech., 65, 110.CrossRefGoogle Scholar
Moffatt, H. K. 1978a. Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press.Google Scholar
Moffatt, H. K. 1978b. Topographic coupling at the core–mantle interface. Geophys. Astrophys. Fluid Dyn., 9, 279288.CrossRefGoogle Scholar
Moffatt, H. K. 1979. A self-consistent treatment of simple dynamo systems. Geophys. Astrophys. Fluid Dyn., 14, 147166.CrossRefGoogle Scholar
Moffatt, H. K. 1983. Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Prog. Phys., 46, 621664.CrossRefGoogle Scholar
Moffatt, H. K. 1986. Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations. J. Fluid Mech., 166, 359–378.CrossRefGoogle Scholar
Moffatt, H. K. 1990. The energy spectrum of knots and links. Nature, 347, 367369.CrossRefGoogle Scholar
Moffatt, H. K. 1992. The Earth’s magnetism – past achievements and future challenges. IUGG Chronicle, 22, 120. (Union Lecture XXth Gen. Assembly, IUGG, Vienna 1991, published by AGU 2013.)Google Scholar
Moffatt, H. K. 2008. Magnetostrophic turbulence and the geodynamo. In: Kaneda, Y. (ed.), Computational Physics and New Perspectives in Turbulence, pp. 339–346. Springer.Google Scholar
Moffatt, H. K. 2010. Note on the suppression of transient shear-flow instability by a spanwise magnetic field. J. Eng. Math., 68, 263268.CrossRefGoogle Scholar
Moffatt, H. K. 2014. The fluid dynamics of James Clerk Maxwell. In: Flood, R., McCartney, M. & Whitaker, A. (eds.), James Clerk Maxwell: Perspectives on His Life and Work, pp. 223–230. Oxford University Press.Google Scholar
Moffatt, H. K. 2017. Corrigendum – the degree of knottedness of tangled vortex lines. J. Fluid Mech., 830, 821822.CrossRefGoogle Scholar
Moffatt, H. K. & Dillon, R. F. 1976. Correlation between gravitational and geomagnetic-fields caused by interaction of core fluid motion with a bumpy core−mantle interface. Phys. Earth Planet. Int., 13, 6778.CrossRefGoogle Scholar
Moffatt, H. K. & Kamkar, H. 1983. On the time-scale associated with flux expulsion. In: Soward, A. M. (ed.), Stellar and Planetary Magnetism, pp. 91–98. Gordon and Breach.Google Scholar
Moffatt, H. K. & Loper, D.E. 1994. The magnetostrophic rise of a buoyant parcel in the Earth’s core. Geophys. J. Int., 117, 394402.CrossRefGoogle Scholar
Moffatt, H. K. & Mizerski, K. A. 2018. Pinch dynamics in a low-β plasma. Fluid Dyn. Res., 50, 011401.CrossRefGoogle Scholar
Moffatt, H. K. & Proctor, M. R. E. 1985. Topological constraints associated with fast dynamo action. J. Fluid Mech., 154, 493507.CrossRefGoogle Scholar
Moffatt, H. K. & Ricca, R. L. 1992. Helicity and the Călugăreanu invariant. Proc. R. Soc. London, Ser. A, 439, 411429.Google Scholar
Moffatt, H. K. & Tokieda, T. 2008. Celt reversals: A prototype of chiral dynamics. Proc. R. Soc. Edinb., Ser. A, 138, 361368.CrossRefGoogle Scholar
Monchaux, R., Berhanu, M., Bourgoin, M., et al. 2007. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. Phys. Rev. Lett., 98, 044502.CrossRefGoogle Scholar
Monchaux, R., Berhanu, M., Aumaître, S., et al. 2009. The von Kármán sodium experiment: turbulent dynamical dynamos. Phys. Fluids, 21, 035108.Google Scholar
Morin, J., Donati, J.-F., Petit, P., et al. 2010. Large-scale magnetic topologies of late M dwarfs. Mon. Not. R. Astron. Soc., 407, 22692286.CrossRefGoogle Scholar
Morin, V. 2005. Instabilités et Bifurcations associées à la Modélisation de la Géodynamo. PhD thesis, Thèse Paris VII.Google Scholar
Morin, V. & Dormy, E. 2009. The dynamo bifurcation in rotating spherical shells. Int. J. Mod. Phys. B, 23, 54675482.CrossRefGoogle Scholar
Moss, D. 2006. Numerical simulation of the Gailitis dynamo. Geophys. Astrophys. Fluid Dyn., 100, 4958.CrossRefGoogle Scholar
Moss, D. & Sokoloff, D. 2011. The saturation of galactic dynamos. Astron. Nach., 332, 8891.CrossRefGoogle Scholar
Mound, J. E. & Buffet, B. A. 2005. Mechanisms of core–mantle angular momentum exchange and the observed spectral properties of torsional oscillations. J. Geophys. Res., 110, B08103.CrossRefGoogle Scholar
Mound, J. E. & Buffet, B. A. 2006. Detection of a gravitational oscillation in length-of-day. Earth Planet. Sci. Lett., 243, 383389.CrossRefGoogle Scholar
Müller, U., Stieglitz, R. & Horanyi, S. 2004. A two-scale hydromagnetic dynamo experiment. J. Fluid Mech., 498, 3171.CrossRefGoogle Scholar
Müller, U., Stieglitz, R., Busse, F. H. & Tilgner, A. 2008. The Karlsruhe two-scale dynamo experiment. C. R. Phys., 9, 729740.CrossRefGoogle Scholar
Munk, W. H. & MacDonald, G. J. F. 1960. The Rotation of the Earth. Cambridge University Press.Google Scholar
Needham, J. 1962. Science and Civilisation in China, Vol. 4, Physics and Physical Technology. Cambridge University Press.Google Scholar
Nellis, W. J. 2015. The unusual magnetic fields of Uranus and Neptune. Modern Physics Letters B, 29, 1430018.CrossRefGoogle Scholar
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S. & Toomre, J. 2011. Buoyant magnetic loops in a global dynamo simulation of a young sun. Astrophys. J. Lett., 739, L38.CrossRefGoogle Scholar
Ness, N. F. 2010. Space exploration of planetary magnetism. Space Sci. Rev., 152, 522.CrossRefGoogle Scholar
Ness, N. F., Behannon, K. W., Lepping, R. P. & Whang, Y. C. 1975. The magnetic field of Mercury, I. J. Geophys. Res., 80, 27082716.CrossRefGoogle Scholar
Ness, N. F., Acuna, M. H., Behannon, K. W., et al. 1986. Magnetic fields at Uranus. Science, 233, 8589.CrossRefGoogle ScholarPubMed
Newitt, L. R. & Barton, C. E. 1996. The position of the North magnetic dip pole in 1994. J. Geomagn. Geoelec., 48, 221232.CrossRefGoogle Scholar
Newitt, L. R., Mandea, M., McKee, L. A. & Orgeval, J.-J. 2002. Recent acceleration of the North magnetic pole linked to magnetic jerks. Eos Trans. AGU, 83, 381.CrossRefGoogle Scholar
Newitt, L. R., Chulliat, A. & Orgeval, J.-J. 2009. Location of the North magnetic pole in April 2007. Earth Planets Space, 61, 703710.CrossRefGoogle Scholar
Nimmo, F. 2002. Why does Venus lack a magnetic field? Geology, 30, 987990.2.0.CO;2>CrossRefGoogle Scholar
Nimmo, F. & Stevenson, D. J. 2000. Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res., 105, 1196911979.CrossRefGoogle Scholar
Noir, J., Brito, D., Aldridge, K. & Cardin, P. 2001a. Experimental evidence of inertial waves in a precessing spheroidal cavity. Geophys. Res. Lett., 28, 37853788.CrossRefGoogle Scholar
Noir, J., Jault, D. & Cardin, P. 2001b. Numerical study of the motions within a slowly precessing sphere at low Ekman number. J. Fluid Mech., 437, 283299.CrossRefGoogle Scholar
Nore, C., Brachet, M. E., Politano, H. & Pouquet, A. 1997. Dynamo action in the Taylor– Green vortex near threshold. Phys. Plasmas, 4, 13.CrossRefGoogle Scholar
Nore, C., Brachet, M. E., Politano, H. & Pouquet, A. 2001. Dynamo action in a forced Taylor–Green vortex. In: Dynamo and Dynamics, a Mathematical Challenge, pp. 51–58. Springer.Google Scholar
Nozières, P. 1978. Reversals of the Earth’s magnetic field: An attempt at a relaxation model. Phys. Earth Planet Inter., 17, 55–74. 2008. Simple models and time scales in the dynamo effect. C. R. Phys., 9, 683–688.CrossRefGoogle Scholar
Oersted, H. C. 1820. Experiments on the effect of a current of electricity on the magnetic needles. Ann. Phil., 16, 273.Google Scholar
Ogilvie, G. I. 2007. Instabilities, angular momentum transport and magnetohydrodynamic turbulence. In: Rosner, R., Hughes, D. & Weiss, N. O. (eds.), The Solar Tachocline, pp. 299–315. Cambridge University Press.Google Scholar
Oppermann, N., Junklewitz, H., Robbers, G., et al. 2012. An improved map of the galactic Faraday sky. Astron. Astrophys., 542, A93.CrossRefGoogle Scholar
Orszag, S. A. 1970. Analytical theories of turbulence. J. Fluid Mech., 41, 363386.CrossRefGoogle Scholar
Orszag, S. A. 1977. Lectures on the statistical theory of turbulence. In: Balian, R. & Peube, J. L. (eds.), Fluid Dynamics, Les Houches 1973, pp. 235–374. Gordon and Breach.Google Scholar
Ortolani, S. 1989. Reversed field pinch confinement physics. Plasma Phys. Controlled Fusion, 31, 1665.CrossRefGoogle Scholar
Oruba, L. 2016. On the role of thermal boundary conditions in dynamo scaling laws. Geophys. Astrophys. Fluid Dyn., 110, 529545.CrossRefGoogle Scholar
Oruba, L. & Dormy, E. 2014a. Predictive scaling laws for spherical rotating dynamos. Geophys. J. Int., 198, 828847.CrossRefGoogle Scholar
Oruba, L. & Dormy, E. 2014b. Transition between viscous dipolar and inertial multipolar dynamos. Geophys. Res. Lett., 41, 71157120.CrossRefGoogle Scholar
Ossendrijver, M. 2003. The solar dynamo. Astron. Astrophys. Rev., 11, 287367.CrossRefGoogle Scholar
Otani, N. F. 1993. A fast kinematic dynamo in two-dimensional time-dependent flows. J. Fluid Mech., 253, 327340.CrossRefGoogle Scholar
Parker, E. N. 1955a. The formation of sunspots from the solar toroidal field. Astrophys. J., 121, 491507.CrossRefGoogle Scholar
Parker, E. N. 1955b. Hydromagnetic dynamo models. Astrophys. J., 122, 293314.CrossRefGoogle Scholar
Parker, E. N. 1963. Kinematical hydromagnetic theory and its applications to the low solar photosphere. Astrophys. J., 138, 552575.CrossRefGoogle Scholar
Parker, E. N. 1970. The generation of magnetic fields in astrophysical bodies. I. The dynamo equations. Astrophys. J., 162, 665673.CrossRefGoogle Scholar
Parker, E. N. 1971a. The generation of magnetic fields in astrophysical bodies, II. The galactic field. Astrophys. J., 163, 255278.CrossRefGoogle Scholar
Parker, E. N. 1971b. The generation of magnetic fields in astrophysical bodies, III. Turbulent diffusion of fields and efficient dynamos. Astrophys. J., 163, 279285.CrossRefGoogle Scholar
Parker, E. N. 1971c. The generation of magnetic fields in astrophysical bodies, VI. Periodic modes of the galactic field. Astrophys. J., 166, 295300.CrossRefGoogle Scholar
Parker, E. N. 1971d. The generation of magnetic fields in astrophysical bodies, VIII. Dynamical considerations. Astrophys. J., 165, 239249.CrossRefGoogle Scholar
Parker, E. N. 1993. A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J., 408, 707719.CrossRefGoogle Scholar
Parker, E. N. 1994. Spontaneous Current Sheets in Magnetic Fields. Oxford University Press.CrossRefGoogle Scholar
Parker, R. L. 1966. Reconnexion of lines of force in rotating spheres and cylinders. Proc. R. Soc. London, Ser. A, 291, 6072.Google Scholar
Pavlov, V. & Gallet, Y. 2005. A third superchron during the early Paleozoic. Episodes, 28, 7884.CrossRefGoogle Scholar
Pekeris, C. L. 1972. Stationary spherical vortices in a perfect fluid. Proc. Natl. Acad. Sci., 69, 2460–2462. (Corrigendum, p. 3849.)CrossRefGoogle Scholar
Pekeris, C. L., Accad, Y. & Shkoller, B. 1975. Kinematic dynamos and the Earth’s magnetic field. Phil. Trans. R. Soc. London, Ser. A, 275, 425461.Google Scholar
Petersons, H. F. & Constable, S. 1996. Global mapping of the electrically conductive lower mantle. Geophys. Res. Lett., 23, 14611464.CrossRefGoogle Scholar
Petitdemange, L., Dormy, E. & Balbus, S. A. 2013. Axisymmetric and non-axisymmetric magnetostrophic MRI modes. Phys. Earth Planet. Inter., 223, 2131.CrossRefGoogle Scholar
Pétrélis, F. & Fauve, S. 2001. Saturation of the magnetic field above the dynamo threshold. Eur. Phys. J. B, 22, 273276.CrossRefGoogle Scholar
Pétrélis, F., Fauve, S., Dormy, E. & Valet, J.-P. 2009. Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett., 102, 144503.CrossRefGoogle ScholarPubMed
Pétrélis, F., Besse, J. & Valet, J.-P. 2011. Plate tectonics may control geomagnetic reversal frequency. Geophys. Res. Lett., 38, L19303.CrossRefGoogle Scholar
Pichakhchi, L. D. 1966. Theory of the hydromagnetic dynamo. Sov. Phys. JETP, 23, 542– 543.Google Scholar
Piddington, J. H. 1972a. The origin and form of the galactic magnetic field, I. Parker’s dynamo model. Cosmic Electrodyn., 3, 6070.Google Scholar
Piddington, J. H. 1972b. The origin and form of the galactic magnetic field, II. The primordial-field model. Cosmic Electrodyn., 3, 129146.Google Scholar
Poincaré, H. 1910. Sur la précession des corps déformables. Bull. Astron., Ser. I, 27, 321– 356.Google Scholar
Ponomarenko, Yu. B. 1973. Theory of the hydromagnetic generator. J. Appl. Mech. Tech. Phys., 14, 775778.CrossRefGoogle Scholar
Pouquet, A. & Patterson, G. S. 1978. Numerical simulation of helical magnetohydrodynamic turbulence. J. Fluid Mech., 85, 305323.CrossRefGoogle Scholar
Pouquet, A., Frisch, U., & Léorat, J. 1976. Strong MHD turbulence and the nonlinear dynamo effect. J. Fluid Mech., 77, 321354.CrossRefGoogle Scholar
Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. 2012. Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355358.CrossRefGoogle ScholarPubMed
Pozzo, M., Davies, C., Gubbins, D. & Alfè, D. 2014. Thermal and electrical conductivity of solid iron and iron-silicon mixtures at Earth’s core conditions. Earth Planet. Sci. Lett., 393, 159164.CrossRefGoogle Scholar
Preston, G. W. 1967. Studies of stellar magnetism – past, present and future. In: Cameron, R. C. (ed.), Proc. AAS-NASA Symp. The Magnetic and Related Stars, pp. 3–28. Mono.Google Scholar
Priest, E. R. 1982. Solar Magnetohydrodynamics. Kluwer.CrossRefGoogle Scholar
Priest, E. R. & Forbes, T. 2007. Magnetic Reconnection: MHD Theory and Applications. Cambridge University Press.Google Scholar
Proctor, M. R. E. 1975. Non-linear mean field dynamo models and related topics. PhD thesis, University of Cambridge.Google Scholar
Proctor, M. R. E. 1977a. Numerical solutions of the nonlinear α-effect dynamo equations. J. Fluid Mech., 80, 769784.CrossRefGoogle Scholar
Proctor, M. R. E. 1977b. The role of mean circulation in parity selection by planetary magnetic fields. Geoph. Astrophys. Fluid Dyn., 8, 311324.CrossRefGoogle Scholar
Proctor, M. R. E. 1994. Convection and magnetoconvection in a rapidly rotating sphere In: Lectures on Solar and Planetary Dynamos, pp. 97–114. Cambridge University Press.CrossRefGoogle Scholar
Rädler, K.-H. 1969a. A new turbulent dynamo, I. Monats. Dt. Akad. Wiss., 11, 272–279. (English translation: Roberts & Stix (1971) pp. 301–308.)Google Scholar
Rädler, K.-H. 1969b. On the electrodynamics of turbulent fluids under the influence of Coriolis forces. Monats. Dt. Akad. Wiss., 11, 194–201. (English translation: Roberts & Stix (1971) pp. 291–299.)Google Scholar
Rädler, K.-H. & Brandenburg, A. 2003. Contributions to the theory of a two-scale homogeneous dynamo experiment. Phys. Rev. E, 67, 026401.CrossRefGoogle Scholar
Rasskazov, A., Chertovskih, R. & Zheligovsky, V. 2018. Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of an incompressible electrically conducting fluid. Phys. Rev. E, 97, 043201.CrossRefGoogle ScholarPubMed
Rayleigh, Lord. 1917. On the dynamics of revolving fluids. Proc. R. Soc. London, Ser. A, 93, 148154.Google Scholar
Raynaud, R., Petitdemange, L. & Dormy, E. 2014. Influence of the mass distribution on the magnetic field topology. Astron. Astrophys., 567, A107.CrossRefGoogle Scholar
Raynaud, R., Petitdemange, L. & Dormy, E. 2015. Dipolar dynamos in stratified systems. Mon. Not. R. Soc., 448, 20552065.CrossRefGoogle Scholar
Raynaud, R. & Tobias, S. M. 2016. Convective dynamo action in a spherical shell: symmetries and modulation. J. Fluid Mech., 799, R6.CrossRefGoogle Scholar
Reiners, A. & Basri, G. 2006. Measuring magnetic fields in ultracool stars and brown dwarfs. Astrophys. J., 644, 497509.CrossRefGoogle Scholar
Reisenegger, A. 2003. Origin and evolution of neutron star magnetic fields. arXiv:astro-ph/0307133v1.Google Scholar
Rempel, M. 2006. Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: Saturation mechanism and torsional oscillations. Astrophys. J., 647, 662.CrossRefGoogle Scholar
Rhines, P. B. & Young, W. R. 1982. Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367.CrossRefGoogle Scholar
Rikitake, T. 1958. Oscillations of a system of disk dynamos. Proc. Camb. Phil. Soc., 54, 89105.CrossRefGoogle Scholar
Rincon, F., Ogilvie, G. I. & Proctor, M. R. E. 2007. Self-sustaining nonlinear dynamo process in Keplerian shear flows. Phys. Rev. Lett., 98, 254502.CrossRefGoogle ScholarPubMed
Riols, A., Rincon, F., Cossu, C., et al. 2013. Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow. J. Fluid Mech., 731, 145.CrossRefGoogle Scholar
Robbins, K. A. 1976. A moment equation description of magnetic reversals in the Earth. Proc. Natl. Acad. Sci. U.S.A., 73, 42974301.CrossRefGoogle ScholarPubMed
Roberts, G. O. 1970. Spatially periodic dynamos. Phil. Trans. R. Soc. London, Ser. A, 266, 535558.Google Scholar
Roberts, G. O. 1972. Dynamo action of fluid motions with two-dimensional periodicity. Phil. Trans. R. Soc. London, Ser. A, 271, 411454.Google Scholar
Roberts, P. H. 1968. On the thermal instability of a rotating-fluid sphere containing heat sources. Phil. Trans. R. Soc. London, Ser. A, 263, 93117.Google Scholar
Roberts, P. H. 1971. Dynamo theory. In: Reid, W. H. (ed.), Mathematical Problems in the Geophysical Sciences, pp. 129–206. AMS.Google Scholar
Roberts, P. H. 1972a. Electromagnetic core−mantle coupling. J. Geomagn. Geoelectr., 24, 231259.CrossRefGoogle Scholar
Roberts, P. H. 1972b. Kinematic dynamo models. Phil. Trans. R. Soc. London, Ser. A, 272, 663698.Google Scholar
Roberts, P. H. 1979. Pure dynamo theory and geomagnetic dynamo theory. In: Cupal, I. (ed.), Proc. First Int. Workshop on Dynamo Theory and the Generation of the Earth’s Magnetic Field, pp. 7–12. Czech. Geophys. Inst. Rep.Google Scholar
Roberts, P. H. & Soward, A. M. 1972. Magnetohydrodynamics of the Earth’s core. Ann. Rev. Fluid Mech., 4, 117154.CrossRefGoogle Scholar
Roberts, P. H. & Soward, A. M. 2009. The Navier–Stokes-α equations revisited. Geophys. Astrophys. Fluid Dyn., 103, 303316.CrossRefGoogle Scholar
Roberts, P. H. & Stewartson, K. 1974. On finite amplitude convection in a rotating magnetic system. Phil. Trans. R. Soc. London, Ser. A, 277, 287315.Google Scholar
Roberts, P. H. & Stewartson, K. 1975. On double roll convection in a rotating magnetic system. J. Fluid Mech., 68, 447– 466.Google Scholar
Roberts, P. H. & Stix, M. 1971. The turbulent dynamo: A translation of a series of paper by F. Krause, K.-H. Rädler and M. Steenbeck. In: Mech. Note 60. NCAR.Google Scholar
Roberts, P. H. & Stix, M. 1972. α-effect dynamos, by the Bullard-Gellman formalism. Astron. Astrophys., 18, 453466.Google Scholar
Roberts, P. H. & Wu, C.-C. 2014. On the modified Taylor constraint. Geophys. Astrophys. Fluid Dyn., 108, 696715.CrossRefGoogle Scholar
Rochester, M. G. 1962. Geomagnetic core−mantle coupling. J. Geophys. Res., 67, 4833– 4836.CrossRefGoogle Scholar
Ross, J. C. 1834. On the position of the North magnetic pole. Phil. Trans. R. Soc. London, Series I, 124, 4752.Google Scholar
Rouchon, P. 1991. On the Arnol’d stability criterion for steady-state flows of an ideal fluid. Europ. J. Mech., B/Fluids, 10, 651661.Google Scholar
Rüdiger, G. & Brandenburg, A. 1995. A solar dynamo in the overshoot layer: cycle period and butterfly diagram. Astron. Astrophys., 296, 557566.Google Scholar
Rüdiger, G. & Kichatinov, L. L. 1993. Alpha-effect and alpha-quenching. Astron. Astrophys., 269, 581588.Google Scholar
Russell, C. T. & Luhmann, J. G. 1997. Uranus: magnetic field and magnetosphere. In: Encyclopedia of Planetary Science, pp. 863–864. SpringerGoogle Scholar
Saar, S. H. 1988. Improved methods for the measurement and analysis of stellar magnetic fields. Astrophys. J., 324, 441465.CrossRefGoogle Scholar
Saffman, P. G. 1963. On the fine-scale structure of vector fields convected by a turbulent fluid. J. Fluid Mech., 16, 545572.CrossRefGoogle Scholar
Salmon, R. 1988. Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech., 20, 225256.CrossRefGoogle Scholar
Sarson, G. R., Jones, C. A., Zhang, K. & Schubert, G. 1997. Magnetoconvection dynamos and the magnetic fields of Io and Ganymede. Science, 276, 11061108.CrossRefGoogle Scholar
Sarson, G. R., Jones, C. A. & Zhang, K. 1999. Dynamo action in a uniform ambient field. Phys. Earth Planet. Inter., 111, 4768.CrossRefGoogle Scholar
Schaeffer, N. & Jault, D. 2016. Electrical conductivity of the lowermost mantle explains absorption of core torsional waves at the equator. Geophys. Res. Lett., 43, 49224928.CrossRefGoogle Scholar
Scheeler, M. W., van Rees, W. M., Kedia, H., Kleckner, D. & Irvine, W. T. M. 2017. Complete measurement of helicity and its dynamics in vortex tubes. Science, 357, 487491.CrossRefGoogle ScholarPubMed
Schekochihin, A. A., Cowley, S. C., Taylor, S. F., Maron, J. L. & McWilliams, J. C. 2004. Simulations of the small-scale turbulent dynamo. Astrophys. J., 612, 276.CrossRefGoogle Scholar
Schlüter, A. & Biermann, L. 1950. Interstellare Magnetfelder. Z. Naturforsch., 5 a, 237– 251.Google Scholar
Schou, J., Antia, H. M., Basu, S., et al. 1998. Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler imager. Astrophys. J., 505, 390417.CrossRefGoogle Scholar
Schrinner, M. 2011. Global dynamo models from direct numerical simulations and their mean-field counterparts. Astron. Astrophys., 533, A108.CrossRefGoogle Scholar
Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M. & Christensen, U. R. 2007. Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo. Geophys. Astrophys. Fluid Dyn., 101, 81116.CrossRefGoogle Scholar
Schrinner, M., Petitdemange, L. & Dormy, E. 2011. Oscillatory dynamos and their induction mechanisms. Astron. Astrophys., 530, A140.CrossRefGoogle Scholar
Schrinner, M., Petitdemange, L. & Dormy, E. 2012. Dipole collapse and dynamo waves in global direct numerical simulations. Astrophys. J., 752, 121.CrossRefGoogle Scholar
Schultz, A., Kurtz, R. D., Chave, A. D. & Jones, A. G. 1993. Conductivity discontinuities in the upper mantle beneath a stable craton. Geophys. Res. Lett., 20, 29412944.CrossRefGoogle Scholar
Schuster, A. 1911. A critical examination of the possible causes of terrestrial magnetism. Proc. Phys. Soc. London, 24, 121137.CrossRefGoogle Scholar
Schutz, B. F. 1980. Geometrical Methods of Mathematical Physics. Cambridge University Press.CrossRefGoogle Scholar
Semel, M. 1989. Zeeman–Doppler imaging of active stars. I – Basic principles. Astron. Astrophys., 225, 456466.Google Scholar
Shearer, M. J. & Roberts, P. H. 1998. The hidden ocean at the top of Earth’s core. Dyn. Atmos. Oceans, 27, 631647.CrossRefGoogle Scholar
Shumaylova, V., Teed, R. J. & Proctor, M. R. E. 2017. Large- to small-scale dynamo in domains of large aspect ratio: Kinematic regime. Mon. Not. R. Astron. Soc., 466, 35133518.CrossRefGoogle Scholar
Silver, D. S. 2008. The last poem of James Clerk Maxwell. Not. Am. Math. Soc., 55, 1266– 1270.Google Scholar
Simitev, R. D. & Busse, F. H. 2009. Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Europhys. Lett., 85, 19001.CrossRefGoogle Scholar
Simon, J. 1996. Energy functions for knots: Beginning to predict physical behavior. In: Mesirov, J. p., Shulton, K. & Sumners, D. W. (eds.), Mathematical Approaches to Biomolecular Structure and Dynamics, pp. 39–58. Springer.Google Scholar
Sisan, D. R., Mujica, N., Tillotson, W. A., et al. 2004. Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett., 93, 114502.CrossRefGoogle ScholarPubMed
Smith, E., Davis, L., Jones, D. E., et al. 1974. Magnetic field of Jupiter and its interaction with the solar wind. Science, 183, 305306.CrossRefGoogle ScholarPubMed
Smith, E. J., Davis, L., Jr., Jones, D. E., et al. 1980. Saturn’s magnetic field and magnetosphere. Science, 207, 407410.CrossRefGoogle ScholarPubMed
Snodgrass, H. B. 1983. Magnetic rotation of the solar photosphere. Astrophys. J., 270, 288–299.CrossRefGoogle Scholar
Snodgrass, H. B. 1984. Separation of large-scale photospheric Doppler patterns. Sol. Phys., 94, 1331.Google Scholar
Soward, A. M. 1972. A kinematic theory of large magnetic Reynolds number dynamos. Phil. Trans. R. Soc. London, Ser. A, 275, 431462.Google Scholar
Soward, A. M. 1974. A convection-driven dynamo I. The weak field case. Phil. Trans. R. Soc. London, Ser. A, 275, 611615.Google Scholar
Soward, A. M. 1975. Random waves and dynamo action. J. Fluid Mech., 69, 145177.CrossRefGoogle Scholar
Soward, A. M. 1977. On the finite amplitude thermal instability of a rapidly rotating fluid sphere. Geophys. Astrophys. Fluid Dyn., 9, 1974.CrossRefGoogle Scholar
Soward, A. M. 1978. A thin disc model of the galactic dynamo. Astron. Nachr., 299, 2533.CrossRefGoogle Scholar
Soward, A. M. 1979. Convection driven dynamos. Phys. Earth Planet. Inter., 20, 134151.CrossRefGoogle Scholar
Soward, A. M. & Jones, C. A. 1983. Alpha-squared-dynamos and Taylor’s constraint. Geophys. Astrophys. Fluid Dyn., 27, 87122.CrossRefGoogle Scholar
Soward, A. M. & Roberts, P. H. 2014. Eulerian and Lagrangian means in rotating, magnetohydrodynamic flows II. Braginsky’s nearly axisymmetric dynamo. Geophys. Astrophys. Fluid Dyn., 108, 269322.CrossRefGoogle Scholar
Spiegel, E. A. & Weiss, N. O. 1982. Magnetic buoyancy and the Boussinesq approximation. Geophys. Astrophys. Fluid Dyn., 22, 219234.CrossRefGoogle Scholar
Spiegel, E. A. & Zahn, J.-P. 1992. The solar tachocline. Astron. Astrophys., 265, 106114.Google Scholar
Spitzer, L., Jr. 1956. Physics of Fully Ionized Gases. Interscience.Google Scholar
Sreenivasan, K. R. & Antonia, R. A. 1997. The phenomenology of small-scale turbulence. Annu. Rev. Fluid Mech., 29, 435472.CrossRefGoogle Scholar
Stasiak, A., Katritch, V. & Kauffman, L. H. (eds.). 1998. Ideal Knots. Series on Knots and Everything, vol. 19. World Scientific.CrossRefGoogle Scholar
Steenbeck, M. & Krause, F. 1966. The generation of stellar and planetary magnetic fields by turbulent dynamo action. Z. Naturforsch., 21 a, 1285–1296. (English translation: Roberts & Stix (1971) pp. 49–79.)Google Scholar
Steenbeck, M. & Krause, F. 1969a. On the dynamo theory of stellar and planetary magnetic fields, I. A. C. dynamos of solar type. Astron. Nachr., 291, 49–84. (English translation: Roberts & Stix (1971) pp. 147–220.)Google Scholar
Steenbeck, M. & Krause, F. 1969b. On the dynamo theory of stellar and planetary magnetic fields, II. D.C. dynamos of planetary type. Astron. Nachr., 291, 271–286. (English translation: Roberts & Stix (1971) pp. 221–245.)Google Scholar
Steenbeck, M., Krause, F. & Rädler, K.-H. 1966. Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflusster Bewegung. Z. Naturforsch., 21 a, 369–376. (English translation: Roberts & Stix (1971) pp. 29–47.)Google Scholar
Steenbeck, M., Kirko, I. M., Gailitis, A., et al. 1967. An experimental verification of the α-effect. Monats. Dt. Akad. Wiss., 9, 716–719. (English translation: Roberts & Stix (1971) pp. 97–102.)Google Scholar
Stefani, F., Gundrum, T., Gerbeth, G., et al. 2007. Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys., 9, 295.CrossRefGoogle Scholar
Stefani, F., Gailitis, A. & Gerbeth, G. 2008. Magnetohydrodynamic experiments on cosmic magnetic fields. J. Appl. Math. Mech., 88, 930954.Google Scholar
Stefani, F., Gerbeth, G., Gundrum, T., et al. 2009. From PROMISE 1 to PROMISE 2: New experimental results on the helical magnetorotational instability. In: Weiss, F.-P. & Rindelhardt, U. (eds.), Ann. Rep. 2008 Inst. of Safety Res. Wissenschaftlich-Technische Berichte, nos. FZD–524. Forschungszentrum Dresden Rossendorf.Google Scholar
Stellmach, S. & Hansen, U. 2004. Cartesian convection driven dynamos at low Ekman number. Phys. Rev., 70, 056312.Google ScholarPubMed
Stenflo, J. O. 1976. Small-scale solar magnetic fields. In: Bumba, V. & Kleczek, J. (eds.), Basic Mechanisms of Solar Activity, Prague 1975. Proc. IAU Symp., vol. 71. IAU.Google Scholar
Stern, D. P. 2002. A millennium of geomagnetism. Rev. Geophys., 40, 130.CrossRefGoogle Scholar
Stevenson, D. J. 1982. Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn. Geophys. Astrophys. Fluid Dyn., 21, 113127.CrossRefGoogle Scholar
Stevenson, D. J. 1983. Planetary magnetic fields. Rep. Prog. Phys., 46, 555.CrossRefGoogle Scholar
Stewart, A. J., Schmidt, M. W., van Westrenen, W. & Liebske, C. 2007. Mars: A new core-crystallization regime. Science, 316, 13231325.CrossRefGoogle Scholar
Stewartson, K. & Roberts, P. H. 1963. On the motion of a liquid in a spheroidal cavity of a precessing rigid body. J. Fluid Mech., 17, 120.CrossRefGoogle Scholar
Stix, M. 1972. Non-linear dynamo waves. Astron. Astrophys., 20, 912.Google Scholar
Stix, M. 1973. Spherical αω-dynamos, by a variational method. Astron. Astrophys., 24, 271286.Google Scholar
Stix, M. 1975. The galactic dynamo. Astron. Astrophys., 42, 8589.Google Scholar
Stix, M. 1976. Differential rotation and the solar dynamo. Astron. Astrophys., 47, 243254.Google Scholar
Stix, M. 1978. The galactic dynamo. Astron. Astrophys., 68, 459.Google Scholar
Størmer, C. 1937. On the trajectories of electric particles in the field of a magnetic dipole with applications to the theory of cosmic radiation. Astrophys. Norvegica, 2, 193– 242.Google Scholar
Taylor, G. I. 1921. Diffusion by continuous movements. Proc. Lond. Math. Soc. A, 20, 196– 211. (Collected papers, vol. 11, ed. Batchelor, G. K., Cambridge University Press, 1960, pp. 172–184.)Google Scholar
Taylor, G. I. 1923. Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. London, Ser. A, 223, 289343.Google Scholar
Taylor, G. I. & Green, A. E. 1937. Mechanism of the production of small eddies from large ones. Proc. R. Soc. London, Ser. A, 158, 499521.Google Scholar
Taylor, J. B. 1963. The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc. R. Soc. London, Ser. A, 274, 274283.Google Scholar
Taylor, J. B. 1974. Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett., 33, 11391141.CrossRefGoogle Scholar
Taylor, J. B. 1986. Relaxation and magnetic reconnection in plasmas. Rev. Mod. Phys., 58, 741.CrossRefGoogle Scholar
Teed, R. J., Jones, C. A. & Tobias, S. M. 2015. The transition to Earth-like torsional oscillations in magnetoconvection simulations. Earth Planet. Sci. Lett., 419, 2231.CrossRefGoogle Scholar
Thébault, E., Finlay, C. C., Beggan, C. D., et al. 2015. International Geomagnetic Reference Field: The 12th generation. Earth Planets Space, 67, 79.Google Scholar
Thellier, E. 1938. Sur l’aimantation des terres cuites et ses applications géophysiques. Thèse de doctorat, Paris.Google Scholar
Thellier, E. 1981. Sur la direction du champ magnétique terrestre, en France, durant les deux derniers millénaires. Phys. Earth Planet. Inter., 24, 89132.CrossRefGoogle Scholar
Thellier, E. & Thellier, O. 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys., 15, 285.Google Scholar
Thompson, C. & Duncan, R. C. 2001. The giant flare of 1998 August 27 from SGR 1900+14. II. Radiative mechanism and physical constraints on the source. Astrophys. J., 561, 980.CrossRefGoogle Scholar
Tilgner, A. & Busse, F. H. 2002. Simulation of the bifurcation diagram of the Karlsruhe dynamo. Magnetohydrodynamics, 38, 3540.Google Scholar
Tobias, S. M. 1997. The solar cycle: Parity interactions and amplitude modulation. Astron. Astrophys., 322, 10071017.Google Scholar
Tobias, S. & Weiss, N. O. 2007. Stellar dynamos. In: Dormy, E. & Soward, A. M. (eds.), Mathematical Aspects of Natural Dynamos, pp. 281–311. The Fluid Mechanics of Astrophysics and Geophysics, vol. 13. Chapman and Hall.Google Scholar
Tobias, S. M., Weiss, N. O. & Kirk, V. 1995. Chaotically modulated stellar dynamos. Mon. Not. R. Soc., 273, 11501166.CrossRefGoogle Scholar
Tobias, S. M., Brummell, N. H., Clune, T. L. & Toomre, J. 2001. Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophys. J., 549, 11831203.CrossRefGoogle Scholar
Tobias, S. M., Rädler, K.-H. & Moffatt, H. K. (eds.). 2018. 50 years of mean-field electrodynamics. J. Plasma Phys. Cambridge University Press.Google Scholar
Toomre, A. 1966. On the coupling of the Earth’s core and mantle during the 26000-year precession. In: Marsden, B. G. & Cameron, A. G. W. (eds.), The Earth-Moon System, pp. 33–45. Plenum.Google Scholar
Tough, J. G. 1967. Nearly symmetric dynamos. Geophys. J. R. Astron. Soc., 13, 393–396. (See also Corrigendum: Geophys. J. R. Astron. Soc.15, 343.)CrossRefGoogle Scholar
Tough, J. G. & Gibson, R. D. 1969. The Braginskii dynamo. In: Runcorn, S. K. (ed.), The Application of Modern Physics to the Earth and Planetary Interiors, pp. 555–569. John Wiley.Google Scholar
Trigo, M. D., Miller-Jones, J. C. A., Migliari, S., Broderick, J. W. & Tzioumis, T. 2013. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U1630–47. Nature, 504, 260262.CrossRefGoogle Scholar
Urey, H. C. 1952. The Planets. Yale University Press.Google Scholar
Usoskin, I. G. 2017. A history of solar activity over millennia. Liv. Rev. Sol. Phys., 14, 3.Google Scholar
Vainshtein, S. I. 1990. Cusp-points and current sheet dynamics. Astron. Astrophys., 230, 238243.Google Scholar
Vainshtein, S. I. & Cattaneo, F. 1992. Nonlinear restrictions on dynamo action. Astrophys. J., 393, 165171.CrossRefGoogle Scholar
Vainshtein, S. I. & Ruzmaikin, A. A. 1971. Generation of the large-scale galactic magnetic field [in Russian]. Astronom. Zh., 48, 902.Google Scholar
Vainshtein, S. I. & Ruzmaikin, A. A. 1972. Generation of the large-scale galactic magnetic field. Sov. Astron., 15, 714.Google Scholar
Vainshtein, S. I. & Zel’dovich, Ya. B. 1972. Origin of magnetic fields in astrophysics. Sov. Phys. Usp., 15, 159172.CrossRefGoogle Scholar
Valet, J.-P., Meynadier, L. & Guyodo, Y. 2005. Geomagnetic dipole strength and reversal rate over the past two million years. Nature, 435, 802805.CrossRefGoogle ScholarPubMed
Velikhov, E. P. 1959. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. Sov. Phys. JETP, 9, 995998. (Translated from Zh. Eksp. Theor. Fiz. 36, 1398–1404 (1959).)Google Scholar
Veronis, G. 1959. Cellular convection with finite amplitude in a rotating fluid. J. Fluid Mech., 5, 401435.CrossRefGoogle Scholar
Vladimirov, V. A., Moffatt, H. K. & Ilin, K. I. 1999. On general transformations and variational principles for the magnetohydrodynamics of ideal fluids. Part 4. Generalized isovorticity principle for three-dimensional flows. J. Fluid Mech., 390, 127–150.CrossRefGoogle Scholar
Walker, G. T. 1896. On a dynamical top. Q. J. Pure Appl. Math., 28, 175184.Google Scholar
Warwick, J. 1963. Dynamic spectra of Jupiter’s decametric emission. Astrophys. J., 137, 4160.CrossRefGoogle Scholar
Wei, X., Ji, H., Goodman, J., et al. 2016. Numerical simulations of the Princeton magneto-rotational instability experiment with conducting axial boundaries. arXiv.1612.01224v1 [physics.flu-dyn].CrossRefGoogle Scholar
Weir, A. D. 1976. Axisymmetric convection in a rotating sphere, I. Stress-free surface. J. Fluid Mech., 75, 4979.CrossRefGoogle Scholar
Weiss, B. P. & Tikoo, S. M. 2014. The lunar dynamo. Science, 346, 1198.CrossRefGoogle ScholarPubMed
Weiss, N. O. 1966. The expulsion of magnetic flux by eddies. Proc. R. Soc. London, Ser. A, 293, 310328.Google Scholar
Weiss, N. O. 1971. The dynamo problem. Q. J. R. Astron. Soc., 12, 432446.Google Scholar
Weiss, N. O. 1976. The pattern of convection in the Sun. In: Bumba, V. & Kleczek, J. (eds), Basic Mechanisms of Solar Activity, Prague 1975. Proc. IAU Symp., vol. 71. IAU.Google Scholar
Weiss, N. O. 2011. Chaotic behaviour in low-order models of planetary and stellar dynamos. Geophys. Astrophys. Fluid Dyn., 105, 256272.CrossRefGoogle Scholar
Weiss, N. O. & Proctor, M. R. E. 2009. Magnetoconvection. Cambridge University Press.Google Scholar
Weiss, N. O. & Tobias, S. M. 2016. Supermodulation of the Sun’s magnetic activity: the effects of symmetry changes. Mon. Not. R. Astron. Soc., 456, 26542661.CrossRefGoogle Scholar
Welander, P. 1967. On the oscillatory instability of a differentially heated fluid loop. J. Fluid Mech., 29, 1730.CrossRefGoogle Scholar
Whitaker, S. 1986. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media, 1, 325.CrossRefGoogle Scholar
White, M. P. 1978. Numerical models of the galactic dynamo. Astron. Nachr., 299, 209– 216.CrossRefGoogle Scholar
Winch, D. E., Ivers, D. J., Turner, J. P. R. & Stening, R. J. 2005. Geomagnetism and Schmidt quasi-normalization. Geophys. J. Int., 160, 487504.CrossRefGoogle Scholar
Woltjer, L. 1958. A theorem on force-free magnetic fields. Proc. Natl. Acad. Sci. U.S.A, 44, 489491.CrossRefGoogle ScholarPubMed
Woltjer, L. 1975. Astrophysical evidence for strong magnetic fields. Ann. N. Y. Acad. Sci., 257, 7679.CrossRefGoogle Scholar
Wood, T. S. & Hollerbach, R. 2015. Three-dimensional simulation of the magnetic stress in a neutron star crust. Phys. Rev. Lett., 114, 191101.CrossRefGoogle Scholar
Wrubel, M. H. 1952. On the decay of a primeval stellar magnetic field. Astrophys. J., 116, 291.CrossRefGoogle Scholar
Wu, C.-C. & Roberts, P. H. 2009. On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn., 103, 467501.CrossRefGoogle Scholar
Wu, C.-C. & Roberts, P. H. 2015. On magnetostrophic mean-field solutions of the geodynamo equations. Geophys. Astrophys. Fluid Dyn., 109, 84110.Google Scholar
Yano, J.-I. 1992. Asymptotic theory of thermal convection in rapidly rotating systems. J. Fluid Mech., 243, 103131.CrossRefGoogle Scholar
Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M. & Folkner, W. M. 2003. Fluid core size of Mars from detection of the solar tide. Science, 300, 299303.CrossRefGoogle ScholarPubMed
Yokokawa, M., Itakura, K., Uno, A., Ishihara, T. & Kaneda, Y. 2002. 16.4-Tflops direct numerical simulation of turbulence by a Fourier spectral method on the Earth Simulator. In: SC’02 Proc. 2002 ACM/IEEE Conf. on Supercomputing. ACM/IEEE.Google Scholar
Yoshimura, H. 1975. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone. Astrophys. J. Suppl., 29, 467.CrossRefGoogle Scholar
Zel’dovich, Ya. B. 1957. The magnetic field in the two-dimensional motion of a conducting turbulent fluid. Sov. Phys. JETP, 4, 460462.Google Scholar
Zeldovich, Ya. Ruzmaikin, B. A. A. & Sokoloff, D. D. 1990. Magnetic Fields in Astrophysics. The Fluid Mechanics of Astrophysics and Geophysics, vol. 3. Gordon and Breach.Google Scholar
Zhang, K.-K. & Busse, F. H. 1988. Finite amplitude convection and magnetic field generation in a rotating spherical shell. Geophys. Astrophys. Fluid Dyn., 44, 3353.CrossRefGoogle Scholar
Zhang, K.-K. & Busse, F. H. 1989. Convection driven magnetohydrodynamic dynamos in rotating spherical shells. Geophys. Astrophys. Fluid Dyn., 49, 97116.CrossRefGoogle Scholar
Zhao, J., Bogart, R. S., Kosovichev, A. G., Duvall, T. L., Jr. & Hartlep, T. 2013. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Sun. Astrophys. J. Lett., 774, L29.CrossRefGoogle Scholar
Zweibel, E. G. & Heiles, C. 1997. Magnetic fields in galaxies and beyond. Nature, 385, 131136.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×