Published online by Cambridge University Press: 15 March 2019
This chapter covers the computation of synthetic seismograms, or theoretical seismograms. This involves predicting, via computation, what seismic traces might look like for a given subsurface medium model. The relatively simple case of vertically traveling waves in a sequence of flat horizontal layers is discussed in relative detail, including how to compute wave amplitude losses due to reflection, transmission, geometrical spreading of wavefronts, and absorption. The generally more complicated case of nonvertically traveling waves is also briefly summarized. More complete methods such as the finite difference and finite element methods are briefly mentioned. Also covered are the reflectivity function and the interference effects that occur for waves with nearly equal arrival times, such as the tuning effect. The chapter ends with an appendix showing examples of synthetic seismograms computed with the finite difference method.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.