Published online by Cambridge University Press: 05 May 2013
To maintain low drag and high lift, the flow over an airfoil section must remain smooth and attached to the surface. This flow has a rapid acceleration around the nose of the airfoil to the point of maximum suction pressure, and then a slow deceleration along the remainder of the upper surface to the trailing edge. The deceleration must be gradual for the flow to remain attached to the surface. At a high enough angle-of-attack, stall occurs: the deceleration is too large for the boundary layer to support, and the flow separates from the airfoil surface. The maximum lift coefficient at stall is highly dependent on the Reynolds number, Mach number, and the airfoil shape. Figure 8.12 shows clmax values from 1.0 to 1.6 for various airfoils, corresponding to stall angles-of-attack of 10° to 16°. The unstalled airfoil has a low drag and a lift coefficient linear with angle-of-attack. The airfoil in stall at high angles-of-attack has high drag, a loss of lift, and an increased nose-down pitch moment caused by a rearward shift of the center of pressure. The aerodynamic flow field of an airfoil or wing in stall is complex, and for the rotary wing there are important three-dimensional and unsteady phenomena as well.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.