Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T14:06:02.746Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 May 2013

Wayne Johnson
Affiliation:
Aeromechanics Branch of NASA Ames Research Center
Get access

Summary

Rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical takeoff and landing. The class thus encompasses helicopters of numerous configurations, tilting proprotor aircraft, compound helicopters, and many other innovative concepts.

Defining “aeromechanics” is more difficult. Today's dictionaries do not capture what the term means for the rotorcraft community. The definitions are not broad enough, and they do not reflect the multidisciplinary facet of the word as applied to rotorcraft. In my 2010 Nikolsky Lecture for the American Helicopter Society, I proposed the following definition:

Aeromechanics: The branch of aeronautical engineering and science dealing with equilibrium, motion, and control of elastic rotorcraft in air.

Aeromechanics covers much of what ther otorcraft engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics cover many of the key performance attributes and many of the often encountered problems in rotorcraft designs.

As with my previous book Helicopter Theory (written in 1976, published in 1980 by Princeton University Press, republished in 1994 by Dover Publications), this text is focused on analysis, with only occasional reference to test data to develop arguments or support results, and with nothing at all regarding the techniques of testing in wind tunnels or flight. Calculated results are presented to illustrate analysis characteristics and rotor behavior.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Wayne Johnson
  • Book: Rotorcraft Aeromechanics
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139235655.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Wayne Johnson
  • Book: Rotorcraft Aeromechanics
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139235655.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Wayne Johnson
  • Book: Rotorcraft Aeromechanics
  • Online publication: 05 May 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139235655.001
Available formats
×