Published online by Cambridge University Press: 05 May 2013
Beams and Rotor Blades
An adequate blade structural model is essential for the prediction of rotor loads and stability. Rotor blades almost universally have a high structural fineness ratio and thus are well idealized as beams. The complexities of rotation, and now multiple load paths and composite construction, have required extensive and continuing efforts to develop appropriate beam models for the solution of rotor problems. For exposition of beam theory, particularly relevant to rotor blade analyses, see Hodges (2006) and Bauchau (1985).
A beam is a structure that has small cross-section dimensions relative to an axial line. Based on the slender geometry, beam theory develops a one-dimensional model of the three-dimensional structure. The deflection of the structure is described as functions of the axial coordinate, obtained from ordinary differential equations (in the axial coordinate). The equations depend on cross-section properties, including two-dimensional elastic stiffnesses. The three-dimensional stress field is determined from the deflection variables. Beam theory combines kinematic equations relating strain measures to deflection variables, constitutive equations relating stress resultants to strain measures, and equilibrium equations relating stress resultants to applied loads. When inertial loads are included, the motion is described by partial differential equations, in time and the axial coordinate.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.